版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届广东省深圳市龙岗区新梓学校数学九年级第一学期期末调研模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.两个相似三角形对应高之比为,那么它们的对应中线之比为()A. B. C. D.2.抛物线的对称轴为A. B. C. D.3.如图,在一幅长,宽的矩形风景画的四周镶一条金色纸边,制成一幅矩形图,如果要使整个挂图的面积是,设金色纸边的宽为,那么满足的方程是()A. B.C. D.4.如图,抛物线与轴交于点,其对称轴为直线,结合图象分析下列结论:①;②;③当时,随的增大而增大;④一元二次方程的两根分别为,;⑤;⑥若,为方程的两个根,则且,其中正确的结论有()A.个 B.个 C.个 D.个5.下列函数是二次函数的是().A.y=2x B.y=+xC.y=x+5 D.y=(x+1)(x﹣3)6.如图,在锐角△ABC中,∠A=60°,∠ACB=45°,以BC为弦作⊙O,交AC于点D,OD与BC交于点E,若AB与⊙O相切,则下列结论:①∠BOD=90°;②DO∥AB;③CD=AD;④△BDE∽△BCD;⑤正确的有()A.①② B.①④⑤ C.①②④⑤ D.①②③④⑤7.如图,点E为菱形ABCD边上的一个动点,并延A→B→C→D的路径移动,设点E经过的路径长为x,△ADE的面积为y,则下列图象能大致反映y与x的函数关系的是()A. B.C. D.8.将抛物线如何平移得到抛物线()A.向左平移2个单位,向上平移3个单位; B.向右平移2个单位,向上平移3个单位;C.向左平移2个单位,向下平移3个单位; D.向右平移2个单位,向下平移3个单位.9.为了估计抛掷某枚啤酒瓶盖落地后凸面向下的概率,小明做了大量重复试验.经过统计得到凸面向上的次数为次,凸面向下的次数为次,由此可估计抛掷这枚啤酒瓶盖落地后凸面向下的概率约为()A. B. C. D.10.对一批衬衣进行抽检,统计合格衬衣的件数,得到合格衬衣的频数表如下:抽取件数501001502005008001000合格频数4288141176448720900估计出售2000件衬衣,其中次品大约是()A.50件 B.100件 C.150件 D.200件二、填空题(每小题3分,共24分)11.在平面直角坐标系中,二次函数与反比例函数的图象如图所示,若两个函数图象上有三个不同的点,,,其中为常数,令,则的值为_________.(用含的代数式表示)12.方程x2﹣9x=0的根是_____.13.2018年10月21日,重庆市第八届中小学艺术工作坊在渝北区空港新城小学体育馆开幕,来自全重庆市各个区县共二十多个工作坊集中展示了自己的艺术特色.组委会准备为现场展示的参赛选手购买三种纪念品,其中甲纪念品5元/件,乙纪念品7元/件,丙纪念品10元/件.要求购买乙纪念品数量是丙纪念品数量的2倍,总费用为346元.若使购买的纪念品总数最多,则应购买纪念品共_____件.14.如图,矩形的顶点,在反比例函数的图象上,若点的坐标为,,轴,则点的坐标为__.15.如图,某舰艇上午9时在A处测得灯塔C在其南偏东75°方向上,且该舰艇以每小时10海里的速度沿南偏东15°方向航行,11小时到达B处,在B处测得灯塔C在北偏东75°方向上,则B处到灯塔C的距离为________海里.16.如图,在⊙O中,,AB=3,则AC=_____.17.如图,在反比例函数位于第一象限内的图象上取一点P1,连结OP1,作P1A1⊥x轴,垂足为A1,在OA1的延长线上截取A1B1=OA1,过B1作OP1的平行线,交反比例函数的图象于P2,过P2作P2A2⊥x轴,垂足为A2,在OA2的延长线上截取A2B2=B1A2,连结P1B1,P2B2,则的值是.18.已知抛物线y=ax2+bx+c开口向上,一条平行于x轴的直线截此抛物线于M、N两点,那么线段MN的长度随直线向上平移而变_____.(填“大”或“小”)三、解答题(共66分)19.(10分)在平面直角坐标系中,抛物线与轴交于点,.(1)若,求的值;(2)过点作与轴平行的直线,交抛物线于点,.当时,求的取值范围.20.(6分)如图,是等边三角形,顺时针方向旋转后能与重合.(1)旋转中心是___________,旋转角度是___________度,(2)连接,证明:为等边三角形.21.(6分)当前,“精准扶贫”工作已进入攻坚阶段,凡贫困家庭均要“建档立卡”.某初级中学七年级共有四个班,已“建档立卡”的贫困家庭的学生人数按一、二、三、四班分别记为A1,A2,A3,A4,现对A1,A2,A3,A4统计后,制成如图所示的统计图.(1)求七年级已“建档立卡”的贫困家庭的学生总人数;(2)将条形统计图补充完整,并求出A1所在扇形的圆心角的度数;(3)现从A1,A2中各选出一人进行座谈,若A1中有一名女生,A2中有两名女生,请用树状图表示所有可能情况,并求出恰好选出一名男生和一名女生的概率.22.(8分)甲、乙两所医院分别有一男一女共4名医护人员支援湖北武汉抗击疫情.(1)若从甲、乙两医院支援的医护人员中分别随机选1名,则所选的2名医护人员性别相同的概率是;(2)若从支援的4名医护人员中随机选2名,用列表或画树状图的方法求出这2名医护人员来自同一所医院的概率.23.(8分)用配方法解方程:24.(8分)如图,在平面直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1,tan∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线y=ax2+bx+c经过点A、B、C.(1)求抛物线的解析式;(2)若点P是第二象限内抛物线上的动点,其横坐标为t,设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,求以C、E、F为顶点三角形与△COD相似时点P的坐标.25.(10分)先化简,再求值:,其中x=+2,y=-2.26.(10分)如图,在平面直角坐标系中,将一个图形绕原点顺时针方向旋转称为一次“直角旋转,已知的三个顶点的坐标分别为,,,完成下列任务:(1)画出经过一次直角旋转后得到的;(2)若点是内部的任意一点,将连续做次“直角旋转”(为正整数),点的对应点的坐标为,则的最小值为;此时,与的位置关系为.(3)求出点旋转到点所经过的路径长.
参考答案一、选择题(每小题3分,共30分)1、A【分析】根据相似三角形对应高的比等于相似比,对应中线的比等于相似比解答.【题目详解】∵两个相似三角形对应高之比为1:2,∴它们的相似比是1:2,∴它们对应中线之比为1:2.故选A.【题目点拨】此题考查相似三角形的性质,解题关键在于掌握其性质.2、B【分析】根据顶点式的坐标特点,直接写出对称轴即可.【题目详解】解∵:抛物线y=-x2+2是顶点式,
∴对称轴是直线x=0,即为y轴.
故选:B.【题目点拨】此题考查了二次函数的性质,二次函数y=a(x-h)2+k的顶点坐标为(h,k),对称轴为直线x=h.3、B【分析】根据矩形的面积=长×宽,我们可得出本题的等量关系应该是:(风景画的长+2个纸边的宽度)×(风景画的宽+2个纸边的宽度)=整个挂图的面积,由此可得出方程.【题目详解】依题意,设金色纸边的宽为,则:
,
整理得出:.
故选:B.【题目点拨】本题主要考查了由实际问题抽象出一元二次方程,对于面积问题应熟记各种图形的面积公式,然后根据题意列出方程是解题关键.4、C【分析】利用二次函数图象与系数的关系,结合图象依次对各结论进行判断.【题目详解】解:抛物线与轴交于点,其对称轴为直线抛物线与轴交于点和,且由图象知:,,故结论①正确;抛物线与x轴交于点故结论②正确;当时,y随x的增大而增大;当时,随的增大而减小结论③错误;,抛物线与轴交于点和的两根是和,即为:,解得,;故结论④正确;当时,故结论⑤正确;抛物线与轴交于点和,,为方程的两个根,为方程的两个根,为函数与直线的两个交点的横坐标结合图象得:且故结论⑥成立;故选C.【题目点拨】本题主要考查二次函数的性质,关键在于二次函数的系数所表示的意义,以及与一元二次方程的关系,这是二次函数的重点知识.5、D【分析】直接利用二次函数的定义进而分析得出答案.【题目详解】解:A、y=2x,是一次函数,故此选项错误;B、y=+x,不是整式,故此选项错误;C、y=x+5,是一次函数,故此选项错误;D、y=(x+1)(x﹣3),是二次函数,故此选项正确.故选D.【题目点拨】此题主要考查了二次函数的定义,正确把握函数的定义是解题关键.6、C【解题分析】根据同弧所对的圆周角等于它所对圆心角的一半,由圆周角∠ACB=45°得到圆心角∠BOD=90°,进而得到的度数为90°,故选项①正确;又因OD=OB,所以△BOD为等腰直角三角形,由∠A和∠ACB的度数,利用三角形的内角和定理求出∠ABC=180°-60°-45°=75°,由AB与圆切线,根据切线的性质得到∠OBA为直角,求出∠CBO=∠OBA-∠ABC=90°-75°=15°,由根据∠BOE为直角,求出∠OEB=180°-∠BOD-∠OBE=180°-90°-15°=75°,根据内错角相等,得到OD∥AB,故选项②正确;由D不一定为AC中点,即CD不一定等于AD,而选项③不一定成立;又由△OBD为等腰三角形,故∠ODB=45°,又∠ACB=45°,等量代换得到两个角相等,又∠CBD为公共角,根据两对对应角相等的两三角形相似得到△BDE∽△BCD,故④正确;连接OC,由相似三角形性质和平行线的性质,得比例,由BD=OD,等量代换即可得到BE等=DE,故选项⑤正确.综上,正确的结论有4个.
故选C.点睛:此题考查了相似三角形的判定与性质,圆周角定理,切线的性质,等腰直角三角形的性质以及等边三角形的性质,熟练掌握性质与定理是解本题的关键.7、D【解题分析】点E沿A→B运动,△ADE的面积逐渐变大;点E沿B→C移动,△ADE的面积不变;点E沿C→D的路径移动,△ADE的面积逐渐减小.故选D.点睛:本题考查函数的图象.分三段依次考虑△ADE的面积变化情况是解题的关键.8、C【分析】根据二次函数图象的平移规律“左加右减,上加下减”即可得出答案.【题目详解】根据二次函数的平移规律可知,将抛物线向左平移2个单位,再向下平移3个单位即可得到抛物线,故选:C.【题目点拨】本题主要考查二次函数图象的平移,掌握二次函数图象的平移规律是解题的关键.9、D【分析】由向上和向下的次数可求出向下的频率,根据大量重复试验下,随机事件发生的频率可以作为概率的估计值即可得答案.【题目详解】∵凸面向上的次数为420次,凸面向下的次数为580次,∴凸面向下的频率为580÷(420+580)=0.58,∵大量重复试验下,随机事件发生的频率可以作为概率的估计值,∴估计抛掷这枚啤酒瓶盖落地后凸面向下的概率约为0.58,故选:D.【题目点拨】本题考查利用频率估计概率,熟练掌握大量重复试验下,随机事件发生的频率可以作为概率的估计值是解题关键.10、D【分析】求出次品率即可求出次品数量.【题目详解】2000×(件).故选:D.【题目点拨】本题考查了样本估计总体的统计方法,求出样本的次品率是解答本题的关键.二、填空题(每小题3分,共24分)11、【分析】根据题意由二次函数的性质、反比例函数的性质可以用含m的代数式表示出W的值,本题得以解决.【题目详解】解:∵两个函数图象上有三个不同的点A(x1,m),B(x2,m),C(x3,m),其中m为常数,
∴其中有两个点一定在二次函数图象上,且这两个点的横坐标互为相反数,第三个点一定在反比例函数图象上,
假设点A和点B在二次函数图象上,则点C一定在反比例函数图象上,
∴m=,得x3=,
∴=x1+x2+x3=0+x3=;故答案为:.【题目点拨】本题考查反比例函数的图象和图象上点的坐标特征、二次函数的图象和图象上点的坐标特征,解答本题的关键是明确题意,利用反比例函数和二次函数的性质解答.12、x1=0,x2=1【分析】观察本题形式,用因式分解法比较简单,在提取x后,左边将变成两个式子相乘为0的情况,让每个式子分别为0,即可求出x.【题目详解】解:x2﹣1x=0即x(x﹣1)=0,解得x1=0,x2=1.故答案为x1=0,x2=1.【题目点拨】此题主要考查一元二次方程的求解,解题的关键是熟知因式分解法的应用.13、2【分析】设购买甲纪念品x件,丙纪念品y件,则购进乙纪念品2y件,根据总价=单价×数量,即可得出关于x,y的二元一次方程,结合x,y均为非负整数,即可求出x,y的值,进而可得出(x+y+2y)的值,取其最大值即可得出答案.【题目详解】设购买甲纪念品x件,丙纪念品y件,则购进乙纪念品2y件,依题意,得:5x+7×2y+10y=346,∴x=,∵x,y均为非负整数,∴346﹣24y为5的整数倍,∴y的尾数为4或9,∴,,,∴x+y+2y=2或53或1.∵2>53>1,∴最多可以购买2件纪念品.故答案为:2.【题目点拨】本题主要考查二元一次方程的实际应用,根据题意,求出x,y的非负整数解,是解题的关键.14、.【分析】根据矩形的性质和点的坐标,即可得出的纵坐标为2,设,根据反比例函数图象上点的坐标特征得出,解得,从而得出的坐标为.【题目详解】点的坐标为,,,四边形是矩形,,轴,轴,点的纵坐标为2,设,矩形的顶点,在反比例函数的图象上,,,,故答案为.【题目点拨】本题考查了反比例函数图象上点的坐标特征,矩形的性质,求得的纵坐标为2是解题的关键.15、20【分析】根据题意得出,,据此即可求解.【题目详解】根据题意:(海里),如图,根据题意:,,∴,,∴,∴,答:B处到灯塔C的距离为海里.故答案为:.【题目点拨】本题考查了解直角三角形的应用-方向角问题,结合航海中的实际问题,将解直角三角形的相关知识有机结合,体现了数学应用于实际生活的思想.16、1.【分析】根据圆心角、弧、弦、弦心距之间的关系解答即可.【题目详解】解:∵在⊙O中,,AB=1,
∴AC=AB=1.
故答案为1.【题目点拨】本题考查圆心角、弧、弦、弦心距之间的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦、两条弦的弦心距中有一组量相等,那么它们所对的其余各组量都分别相等.17、【题目详解】解:设P1点的坐标为(),P2点的坐标为(b,)∵△OP1B1,△B1P2B2均为等腰三角形,
∴A1B1=OA1,A2B2=B1A2,
∴OA1=a,OB1=2a,B1A2=b-2a,B1B2=2(b-2a),
∵OP1∥B1P2,
∴∠P1OA1=∠A2B1P2,
∴Rt△P1OA1∽Rt△P2B1A2,
∴OA1:B1A2=P1A1:P2A2,a:(b-2a)=整理得a2+2ab-b2=0,解得:a=()b或a=()b(舍去)∴B1B2=2(b-2a)=(6-4)b,∴故答案为:【题目点拨】该题较为复杂,主要考查学生对相似三角形的性质和反比例函数上的点的坐标与几何图形之间的关系.18、大【解题分析】因为二次函数的开口向上,所以点M,N向上平移时,距离对称轴的距离越大,即MN的长度随直线向上平移而变大,故答案为:大.三、解答题(共66分)19、(1);(2)的取值范围为或.【分析】(1)先求出抛物线的对称轴,利用对称性求出A、B的坐标,然后把点代入抛物线,即可求出m的值;(2)根据根的判别式得到m的范围,再结合,然后分为:①开口向上,②开口向下,两种情况进行分析,即可得到答案.【题目详解】解:(1)抛物线对称轴为直线.∴点关于直线对称,∵抛物线与轴交于点,将代入中,得,∴;(2)抛物线与轴有两个交点∴,即,解得:或;①若,开口向上,如图,当时,有,解得:;∵或,∴;②若,开口向下,如图,当时,有,解得:,∵或,∴;综上所述,的取值范围为:或.【题目点拨】本题考查了二次函数的性质,二次函数与坐标轴的交点问题,根的判别式,解题的关键是掌握二次函数的性质,利用数形结合的思想和分类讨论的思想进行解题.20、(1)B,60;(2)见解析【分析】(1)根据三角形三个顶点中没有变动的点就是旋转中心来判断,再根据旋转的性质判断出旋转的角度即可;(2)先根据旋转的性质得出和即可证明.【题目详解】解:(1)旋转中心是,旋转角度是度;(2)证明:是等边三角形,,旋转角是;,又,是等边三角形.【题目点拨】本题主要考察正三角形的判定及性质、图形的旋转性质,熟练掌握性质是关键.21、(1)15人;(2)补图见解析.(3).【分析】(1)根据三班有6人,占的百分比是40%,用6除以所占的百分比即可得总人数;(2)用总人数减去一、三、四班的人数得到二班的人数即可补全条形图,用一班所占的比例乘以360°即可得A1所在扇形的圆心角的度数;(3)根据题意画出树状图,得出所有可能,进而求恰好选出一名男生和一名女生的概率.【题目详解】解:(1)七年级已“建档立卡”的贫困家庭的学生总人数:6÷40%=15人;(2)A2的人数为15﹣2﹣6﹣4=3(人)补全图形,如图所示,A1所在圆心角度数为:×360°=48°;(3)画出树状图如下:共6种等可能结果,符合题意的有3种∴选出一名男生一名女生的概率为:P=.【题目点拨】本题考查了条形图与扇形统计图,概率等知识,准确识图,从图中发现有用的信息,正确根据已知画出树状图得出所有可能是解题关键.22、(1);(2)【分析】(1)根据甲、乙两所医院分别有一男一女,列出树状图,得出所有情况,再根据概率公式即可得出答案;(2)根据题意先画出树状图,得出所有情况数,再根据概率公式即可得出答案.【题目详解】解:(1)根据题意画图如下:共有4种情况,其中所选的2名教师性别相同的有2种,则所选的2名教师性别相同的概率是:;故答案为:.(2)将甲、乙两医院的医生分别记为男1、女1、男2、女2,画树形图得:所以共有12种等可能的结果,满足要求的有4种.∴P(2名医生来自同一所医院的概率)=.【题目点拨】本题考查列表法和树状图法,注意结合题意中“写出所有可能的结果”的要求,使用列举法,注意按一定的顺序列举,做到不重不漏.23、x1=+1,x2=+1【分析】先把方程进行整理,然后利用配方法进行解方程,即可得到答案.【题目详解】解:∵,∴,∴,∴,∴x1=+1,x2=+1.【题目点拨】本题考查了解一元二次方程,解题的关键是熟练掌握配方法进行解一元二次方程.24、(1)抛物线的解析式为y=﹣x2﹣2x+1;(2)当△CEF与△COD相似时,P点的坐标为(﹣1,4)或(﹣2,1).【解题分析】(1)根据正切函数,可得OB,根据旋转的性质,可得△DOC≌△AOB,根据待定系数法,可得函数解析式;(2)分两种情况讨论:①当∠CEF=90°时,△CEF∽△COD,此时点P在对称轴上,即点P为抛物线的顶点;②当∠CFE=90°时,△CFE∽△COD,过点P作PM⊥x轴于M点,得到△EFC∽△EMP,根据相似三角形的性质,可得PM与ME的关系,解方程,可得t的值,根据自变量与函数值的对应关系,可得答案.【题目详解】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 成都七中模考题数学试卷
- 广播站工作参考计划范文1
- 财产租赁协议
- 集装箱租赁合同范本
- 食堂租赁合同范本
- 物业公司保安巡逻岗巡查记录表(完整版)
- 行李保管服务规定(完整版)
- 2024幼儿园教职工劳动合同与专业成长服务合同范本2篇
- 2024年食堂临时工劳务合同3篇
- 2025商品买卖合同示范文本
- 中医医疗技术相关性感染预防与控制
- JT-T-860.2-2013沥青混合料改性添加剂第2部分:高黏度添加剂
- 细胞生物学智慧树知到期末考试答案章节答案2024年中南民族大学
- 2024中国留学生归国求职洞察报告
- 2024年注册安全工程师考试题库及参考答案【完整版】
- 2024年全国人才流动中心招聘事业编制人员3人历年公开引进高层次人才和急需紧缺人才笔试参考题库(共500题)答案详解版
- 第十二章 全等三角形 作业设计-2023-2024学年人教版八年级数学上册
- 建筑结构荷载规范DBJ-T 15-101-2022
- “7.18”架桥机坍塌较大事故调查报告20201117
- 制药专业毕业设计开题报告
- 美术基础(汉中职业技术学院)智慧树知到期末考试答案2024年
评论
0/150
提交评论