版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届天津市南开区育红中学数学九上期末学业质量监测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.一元二次方程的根是()A. B. C. D.2.已知二次函数y=,设自变量的值分别为x1,x2,x3,且-3<x1<x2<x3,则对应的函数值y1,y2,y3的大小关系是()A.y1>y2>y3 B.y1<y2<y3 C.y2>y3>y1 D.y2<y3<y13.已知一个三角形的两个内角分别是40°,60°,另一个三角形的两个内角分别是40°,80°,则这两个三角形()A.一定不相似 B.不一定相似 C.一定相似 D.不能确定4.在平面直角坐标系中,函数的图象经过变换后得到的图象,则这个变换可以是()A.向左平移2个单位 B.向右平移2个单位C.向上平移2个单位 D.向下平移2个单位5.计算的结果是()A. B. C. D.6.涞水县某种植基地2018年蔬菜产量为100吨,预计2020年蔬菜产量达到120吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x,则可列方程为()A. B.C. D.7.如图,截的三条边所得的弦长相等,若,则的度数为()A. B. C. D.8.若,则函数与在同一平面直角坐标系中的图象大致是()A. B. C. D.9.如图,A,B,C是⊙O上的三点,∠BAC=55°,则∠BOC的度数为()A.100° B.110° C.125° D.130°10.如图,四边形ABCD内接于⊙O,E为CD延长线上一点,若∠ADE=110°,则∠B=()A.80° B.100° C.110° D.120°11.如图,在⊙O中,若点C是的中点,∠A=50°,则∠BOC=()A.40° B.45° C.50° D.60°12.在一个不透明的布袋中,有红色、黑色、白色球共40个,它们除颜色外其他完全相同,小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率稳定在和,则布袋中白色球的个数可能是()A.24 B.18 C.16 D.6二、填空题(每题4分,共24分)13.方程的根为_____.14.如图,在△ABC和△APQ中,∠PAB=∠QAC,若再增加一个条件就能使△APQ∽△ABC,则这个条件可以是________.15.如图,△ABC是等腰直角三角形,BC是斜边,将△ABP绕点A逆时针旋转后,能与△ACP′重合,如果AP=3,那么PP′=______.16.若,则_______.17.抛物线与轴交点坐标为______.18.若关于x的函数与x轴仅有一个公共点,则实数k的值为.三、解答题(共78分)19.(8分)如图,一次函数y=kx+b与反比例函数y=的图象在第一象限交于A,B两点,B点的坐标为(3,2),连接OA,OB,过B作BD⊥y轴,垂足为D,交OA于C,若OC=CA.(1)求一次函数和反比例函数的表达式;(2)求△AOB的面积.20.(8分)空间任意选定一点,以点为端点,作三条互相垂直的射线,,.这三条互相垂直的射线分别称作轴、轴、轴,统称为坐标轴,它们的方向分别为(水平向前),(水平向右),(竖直向上)方向,这样的坐标系称为空间直角坐标系.将相邻三个面的面积记为,,,且的小长方体称为单位长方体,现将若干个单位长方体在空间直角坐标系内进行码放,要求码放时将单位长方体所在的面与轴垂直,所在的面与轴垂直,所在的面与轴垂直,如图1所示.若将轴方向表示的量称为几何体码放的排数,轴方向表示的量称为几何体码放的列数,二轴方向表示的量称为几何体码放的层数;如图2是由若干个单位长方体在空间直角坐标内码放的一个几何体,其中这个几何体共码放了排列层,用有序数组记作,如图3的几何体码放了排列层,用有序数组记作.这样我们就可用每一个有序数组表示一种几何体的码放方式.(1)有序数组所对应的码放的几何体是______________;A.B.C.D.(2)图4是由若干个单位长方体码放的一个几何体的三视图,则这种码放方式的有序数组为(______,_______,_______),组成这个几何体的单位长方体的个数为____________个.(3)为了进一步探究有序数组的几何体的表面积公式,某同学针对若干个单位长方体进行码放,制作了下列表格:几何体有序数组单位长方体的个数表面上面积为S1的个数表面上面积为S2的个数表面上面积为S3的个数表面积根据以上规律,请直接写出有序数组的几何体表面积的计算公式;(用,,,,,表示)(4)当,,时,对由个单位长方体码放的几何体进行打包,为了节约外包装材料,我们可以对个单位长方体码放的几何体表面积最小的规律进行探究,请你根据自己探究的结果直接写出使几何体表面积最小的有序数组,这个有序数组为(______,_______,______),此时求出的这个几何体表面积的大小为____________(缝隙不计)21.(8分)如图,一农户要建一个矩形猪舍,猪舍的一边利用长为15m的住房墙,另外三边用27m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长,宽分别为多少米时,猪舍面积为96m2?22.(10分)阅读下列材料,并完成相应的任务.任务:(1)上述证明过程中的“依据1”和“依据2”分别指什么?依据1:依据2:(2)当圆内接四边形ABCD是矩形时,托勒密定理就是我们非常熟知的一个定理:(请写出定理名称).(3)如图(3),四边形ABCD内接于⊙O,AB=3,AD=5,∠BAD=60°,点C是弧BD的中点,求AC的长.23.(10分)在中,,点在边上运动,连接,以为一边且在的右侧作正方形.(1)如果,如图①,试判断线段与之间的位置关系,并证明你的结论;(2)如果,如图②,(1)中结论是否成立,说明理由.(3)如果,如图③,且正方形的边与线段交于点,设,,,请直接写出线段的长.(用含的式子表示)24.(10分)如图,在△ABC中,D为BC边上的一点,且∠CAD=∠B,CD=4,BD=2,求AC的长25.(12分)在平面直角坐标系中,抛物线的顶点为P,且与y轴交于点A,与直线交于点B,C(点B在点C的左侧).(1)求抛物线的顶点P的坐标(用含a的代数式表示);(2)横、纵坐标都是整数的点叫做整点,记抛物线与线段AC围成的封闭区域(不含边界)为“W区域”.①当时,请直接写出“W区域”内的整点个数;②当“W区域”内恰有2个整点时,结合函数图象,直接写出a的取值范围.26.九年级(1)班的小华和小红两名学生10次数学测试成绩如下表(表I)所示:小花708090807090801006080小红908010060908090606090现根据上表数据进行统计得到下表(表Ⅱ):姓名平均成绩中位数众数小华80小红8090(1)填空:根据表I的数据完成表Ⅱ中所缺的数据;(2)老师计算了小红的方差请你计算小华的方差并说明哪名学生的成绩较为稳定.
参考答案一、选择题(每题4分,共48分)1、D【解题分析】x2−3x=0,x(x−3)=0,∴x1=0,x2=3.故选:D.2、A【分析】对于开口向下的二次函数,在对称轴的右侧为减函数.【题目详解】解:∵二次函数y=∴对称轴是x=−,函数开口向下,
而对称轴的左侧y随x的增大而增大,在对称轴的右侧y随x的增大而减小,
∵-1<x1<x2<x1,
∴y1,y2,y1的大小关系是y1>y2>y1.
故选:A.考点:二次函数的性质3、C【解题分析】试题解析:∵一个三角形的两个内角分别是∴第三个内角为又∵另一个三角形的两个内角分别是∴这两个三角形有两个内角相等,∴这两个三角形相似.故选C.点睛:两组角对应相等,两三角形相似.4、A【分析】将两个二次函数均化为顶点式,根据两顶点坐标特征判断平移方向和平移距离.【题目详解】,顶点坐标为,,顶点坐标为,所以函数的图象向左平移2个单位后得到的图象.故选:A【题目点拨】本题考查二次函数图象的特征,根据顶点坐标确定变换方式是解答此题的关键.5、B【分析】把每个分数写成两个分数之差的一半,然后再进行简便运算.【题目详解】解:原式===.故选B.【题目点拨】本题是一个规律计算题,主要考查了有理数的混合运算,关键是把分数乘法转化成分数减法来计算.6、A【分析】根据2020年的产量=2018年的产量×(1+年平均增长率)2,把相关数值代入即可.【题目详解】解:设该种植基地蔬菜产量的年平均增长率(百分数)为x,根据题意,得,故选A.【题目点拨】此题考查了一元二次方程的应用(增长率问题).解题的关键在于理清题目的含义,找到2020年的产量的代数式,根据条件找准等量关系,列出方程.7、C【分析】先利用截的三条边所得的弦长相等,得出即是的内心,从而∠1=∠2,∠3=∠4,进一步求出的度数.【题目详解】解:过点分别作、、,垂足分别为、、,连接、、、、、、、,如图:∵,∴∴∴点是三条角平分线的交点,即三角形的内心∴,∵∴∴.故选:C【题目点拨】本题考查的是三角形的内心、角平分线的性质、全等三角形的判定和性质以及三角形内角和定理,比较简单.8、B【分析】根据及正比例函数与反比例函数图象的特点,可以从和两方面分类讨论得出答案.【题目详解】∵,∴分两种情况:
(1)当时,正比例函数数的图象过原点、第一、三象限,反比例函数图象在第二、四象限,无此选项;
(2)当时,正比例函数的图象过原点、第二、四象限,反比例函数图象在第一、三象限,选项B符合.
故选:B.【题目点拨】本题主要考查了反比例函数的图象性质和正比例函数的图象性质,解题的关键是掌握它们的性质.9、B【分析】由点A、B、C是⊙O上的三点,∠BAC=40°,根据在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得∠BOC的度数.【题目详解】解:∵∠BAC=55°,∴∠BOC=2∠BAC=110°.(圆周角定理)故选:B.【题目点拨】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半10、C【分析】直接利用圆内接四边形的性质分析得出答案.【题目详解】∵四边形ABCD内接于⊙O,E为CD延长线上一点,∠ADE=110°,∴∠B=∠ADE=110°.故选:C.【题目点拨】本题考查圆内接四边形的性质.熟练掌握圆内接四边形的性质:圆内接四边形的对角互补;.圆内接四边形的外角等于它的内对角是解题的关键.11、A【解题分析】试题解析:∵点C是的中点,故选A.点睛:垂直于弦的直径,平分弦并且平分弦所对的两条弧.12、C【分析】先由频率之和为1计算出白球的频率,再由数据总数×频率=频数计算白球的个数.【题目详解】∵摸到红色球、黑色球的频率稳定在15%和45%,∴摸到白球的频率为1−15%−45%=40%,故口袋中白色球的个数可能是40×40%=16个.故选:C.【题目点拨】大量反复试验下频率稳定值即概率.关键是算出摸到白球的频率.二、填空题(每题4分,共24分)13、x=3【分析】方程两边同时乘以,变为整式方程,然后解方程,最后检验,即可得到答案.【题目详解】解:,∴方程两边同时乘以,得:,解得:,经检验:是原分式方程的根,∴方程的根为:.故答案为:.【题目点拨】本题考查了解分式方程,解题的关键是熟练掌握解分式方程的步骤,注意要检验.14、∠P=∠B(答案不唯一)【分析】要使△APQ∽△ABC,在这两三角形中,由∠PAB=∠QAC可知∠PAQ=∠BAC,还需的条件可以是∠B=∠P或∠C=∠Q或.【题目详解】解:这个条件为:∠B=∠P
∵∠PAB=∠QAC,
∴∠PAQ=∠BAC
∵∠B=∠P,
∴△APQ∽△ABC,故答案为:∠B=∠P或∠C=∠Q或.【题目点拨】本题考查了相似三角形的判定与性质的运用,掌握相似三角形的判定与性质是解题的关键.15、3【分析】根据旋转的性质,可得∠BAC=∠PAP′=90°,AP=AP′,故△APP′是等腰直角三角形,由勾股定理得PP′的大小.【题目详解】解:根据旋转的性质,可得∠BAC=∠PAP′=90°,AP=AP′,∴△APP′是等腰直角三角形,由勾股定理得PP′=.故答案为.【题目点拨】本题考查了图形的旋转变化,旋转得到的图形与原图形全等,解答时要分清旋转角和对应线段.16、12【分析】根据比例的性质即可求解.【题目详解】∵,∴,故答案为:.【题目点拨】本题考查了比例的性质,解答本题的关键是明确比例的性质的含义.17、【分析】令x=0,求出y的值即可.【题目详解】解:∵当x=0,则y=-1+3=2,∴抛物线与y轴的交点坐标为(0,2).【题目点拨】本题考查的是二次函数的性质,熟知y轴上点的特点,即y轴上的点的横坐标为0是解答此题的关键.18、0或-1.【解题分析】由于没有交待是二次函数,故应分两种情况:当k=0时,函数是一次函数,与x轴仅有一个公共点.当k≠0时,函数是二次函数,若函数与x轴仅有一个公共点,则有两个相等的实数根,即.综上所述,若关于x的函数与x轴仅有一个公共点,则实数k的值为0或-1.三、解答题(共78分)19、(1)y=;y=-x+6(2)【解题分析】(1)先利用待定系数法求出反比例函数解析式,进而确定出点A的坐标,再用待定系数法求出一次函数解析式;(2)先求出OB的解析式,进而求出AG,用三角形的面积公式即可得出结论.【题目详解】解:(1)如图,过点A作AF⊥x轴交BD于E,∵点B(3,2)在反比例函数的图象上,∴a=3×2=6,∴反比例函数的表达式为,∵B(3,2),∴EF=2,∵BD⊥y轴,OC=CA,∴AE=EF=AF,∴AF=4,∴点A的纵坐标为4,∵点A在反比例函数图象上,∴A(,4),∴,∴,∴一次函数的表达式为;(2)如图1,过点A作AF⊥x轴于F交OB于G,∵B(3,2),∴直线OB的解析式为y=,∴G(,1),∵A(,4),∴AG=4﹣1=3,∴S△AOB=S△AOG+S△ABG=×3×3=.【题目点拨】此题主要考查了待定系数法,三角形的面积公式,三角形的中位线,解本题的关键是用待定系数法求出直线AB的解析式.20、(1)B;(2)2,3,2,1;(3)S(x,y,z)=2(yzS1+xzS2+xyS3);(4)2,2,3,2【分析】(1)根据几何体码放的情况,即可得到答案;(2)根据几何体的三视图,可知:几何体有2排,3列,2层,进而即可得到答案;(3)根据有序数组的几何体,表面上面积为S1的个数为2yz个,表面上面积为S2的个数为2xz个,表面上面积为S3的个数为2xy个,即可得到答案;(4)由题意得:xyz=1,=4yz+6xz+8xy,要使的值最小,x,y,z应满足x≤y≤z(x,y,z为正整数),进而进行分类讨论,即可求解.【题目详解】(1)∵有序数组所对应的码放的几何体是:3排列4层,∴B选项符合题意,故选B.(2)根据几何体的三视图,可知:几何体有2排,3列,2层,∴这种码放方式的有序数组为(2,3,2),∵几何体有2层,每层有6个单位长方体,∴组成这个几何体的单位长方体的个数为1个.故答案是:2,3,2;1.(3)∵有序数组的几何体,表面上面积为S1的个数为2yz个,表面上面积为S2的个数为2xz个,表面上面积为S3的个数为2xy个,∴=2(yzS1+xzS2+xyS3).(4)由题意得:xyz=1,=4yz+6xz+8xy,∴要使的值最小,x,y,z应满足x≤y≤z(x,y,z为正整数).∴在由1个单位长方体码放的几何体中,满足条件的有序数组为(1,1,1),(1,2,6),(1,3,4),(2,2,3),∵,,,,∴由1个单位长方体码放的几何体中,表面积最小的有序数组为:(2,2,3),最小表面积为:2.故答案是:2,2,3;2.【题目点拨】本题主要考查几何体的三视图与表面积的综合,掌握几何体的三视图的定义和表面积公式,是解题的关键.21、所围矩形猪舍的长为1m、宽为8m【分析】设矩形猪舍垂直于住房墙一边长为xm可以得出平行于墙的一边的长为(27﹣2x+1)m.根据矩形的面积公式建立方程求出其解就可以了.【题目详解】解:设矩形猪舍垂直于住房墙一边长为xm可以得出平行于墙的一边的长为(27﹣2x+1)m,由题意得x(27﹣2x+1)=96,解得:x1=6,x2=8,当x=6时,27﹣2x+1=16>15(舍去),当x=8时,27﹣2x+1=1.答:所围矩形猪舍的长为1m、宽为8m.【题目点拨】本题考查了列一元二次方程解实际问题的运用,矩形的面积公式的运用及一元二次方程的解法的运用,解答时寻找题目的等量关系是关键.22、(1)同弧所对的圆周角相等;两角分别对应相等的两个三角形相似(2)勾股定理(3)AC=【分析】(1)根据圆周角定理的推论以及三角形相似的判定定理,即可得到答案;(2)根据矩形的性质和托勒密定理,即可得到答案;(3)连接BD,过点C作CE⊥BD于点E.由四边形ABCD内接于⊙O,点C是弧BD的中点,可得∆BCD是底角为30°的等腰三角形,进而得BD=2DE=CD,结合托勒密定理,列出方程,即可求解.【题目详解】(1)依据1指的是:同弧所对的圆周角相等;依据2指的是:两角分别对应相等的两个三角形相似.故答案是:同弧所对的圆周角相等;两角分别对应相等的两个三角形相似;(2)∵当圆内接四边形ABCD是矩形时,∴AC=BD,BC=AD,AB=CD,∵由托勒密定理得:AC·BD=AB·CD+BC·AD,∴.故答案是:勾股定理;(3)如图,连接BD,过点C作CE⊥BD于点E.∵四边形ABCD内接于⊙O,∴∠BAD+∠BCD=180°,∵∠BAD=60°,∴∠BCD=120°,∵点C是弧BD的中点,∴弧BC=弧CD,∴BC=CD,∴∠CBD=30°.在Rt△CDE中,DE=CD·cos30°,∴DE=CD,∴BD=2DE=CD.由托勒密定理得:AC·BD=AB·CD+BC·AD.∴AC·CD=3CD+5CD.∴AC=.【题目点拨】本题主要考查圆的内接四边形的性质与相似三角形的综合,添加辅助线,构造底角为30°的等腰三角形,是解题的关键.23、(1);证明见解析;(2)成立;理由见解析;(3).【分析】(1)先证明,得到,再根据角度转换得到∠BCF=90°即可;(2)过点作交于点,可得,再证明,得,即可证明;(3)过点作交的延长线于点,可求出,则,根据得出相似比,即可表示出CP.【题目详解】(1);证明:∵,,∴,由正方形得,∵,∴,在与中,,∴,∴,∴,即;(2)时,的结论成立;证明:如图2,过点作交于点,∵,∴,∴,在和中,,∴,∴,,即;(3)过点作交的延长线于点,∵,∴△AQC为等腰直角三角形,∵,∴,∵DC=x,∴,∵四边形ADEF为正方形,∴∠ADE=90°,∴∠PDC+∠ADQ=90°,∵∠ADQ+∠QAD=90°,∴∠PDC=∠QAD,∴,∴,∴,.【题目点拨】本题考查了全等三角形性质及判定,相似三角形的判定及性质,正方形的性质等,构建全等三角形,相似三角形是解决此题的关键.24、【分析】根据相似三角形的判定定理可得△CAD∽△CBA,列出比例式即可求出AC.【题目详解】解:∵CD=4,BD=2,∴BC=CD+BD=6∵∠CAD=∠B,∠C=∠C∴△CAD∽△CBA∴∴解得:或(舍去)即.【题目点拨】此题考查的是相似三角形的判定及性质,掌握有两组对应角相等的两个三角形相似和相似三角形的对应边成比例是解决此题的关键.25、(1)顶点P的坐标为;(2)①6个;②,.【分析】(1)由抛物线解析式直接可求;
(2)①由已知可知A(0,2),C(2+,-2),画出函数图象,观察图象可得;
②分两种情况求:当a>0时,抛物线定点经过(2,-2)时,a=1,抛物线定点经过(2,-1)时,a=,则<a≤1;当a<0时,抛物线定点经过(2,2)时,a=-1,抛物线定点经过(2,1)时,a=-,则-1≤a<-.【题目详解】解:(1)∵y=ax2-4ax+2a=a(x-2)2-2a,
∴顶点为(2,-2a);
(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广东培正学院《形态构成》2023-2024学年第一学期期末试卷
- 广东农工商职业技术学院《制药工程学》2023-2024学年第一学期期末试卷
- 广东茂名幼儿师范专科学校《汽车电子控制技术》2023-2024学年第一学期期末试卷
- 广东茂名农林科技职业学院《机械制造技术基础冷》2023-2024学年第一学期期末试卷
- 人教版七年级下册英语单词
- 保定市2022高考英语阅读理解选练(4)答案
- 【高考解码】2021届高三生物二轮复习专题-物质跨膜运输、酶和ATP
- 【Ks5u发布】江苏省苏锡常镇四市2021届高三下学期教学情况调研(一)-化学-扫描版含答案
- 【Ks5u发布】江苏省徐州市2021届高三第三次质量检测-历史-扫描版含答案
- 【KS5U原创】新课标2021年高一化学暑假作业(七)
- 冠心病健康教育完整版课件
- 国家开放大学《理工英语1》单元自测8试题答案
- ITV系列电气比例阀英文说明书
- 重症患者的容量管理课件
- 期货基础知识TXT
- 六年级上册道德与法治课件-第一单元 我们的守护者 复习课件-人教部编版(共12张PPT)
- 《尖利的物体会伤人》安全教育课件
- 安全管理体系及保证措施
- 大学生自主创业证明模板
- 启闭机试运行记录-副本
- 少儿美术画画 童画暑假班 7岁-8岁 重彩 《北京烤鸭》
评论
0/150
提交评论