版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省临汾市淹底第一中学高二数学文期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.不等式>x–1的解是(
)(A)x>2
(B)x≤–
(C)x>2或x≤–
(D)x>1或x≤–参考答案:C2.函数f(x)=ex+x-2的零点所在的区间是(e≈2.71828)
(
)A.(0,)
B.(,1)
C.(1,2)
D.(2,3)参考答案:A3.设若是与的等比中项,则的最小值为(
)A.8 B.4 C.1 D.参考答案:B略4.定义在R上的函数满足,且当时,,对,,使得,则实数a的取值范围为(
)A. B.C. D.参考答案:D由题知问题等价于函数在上的值域是函数在上的值域的子集.当时,,由二次函数及对勾函数的图象及性质,得此时,由,可得,当时,.则在的值域为.当时,,则有,解得,当时,,不符合题意;当时,,则有,解得.综上所述,可得的取值范围为.故本题答案选.点睛:求解分段函数问题应对自变量分类讨论,讨论的标准就是自变量与分段函数所给出的范围的关系,求解过程中要检验结果是否符合讨论时的范围.讨论应该不重复不遗漏.5.在极坐标系下,极坐标方程表示的图形是()A.两个圆 B.一个圆和一条直线C.一个圆和一条射线 D.一条直线和一条射线参考答案:B试题分析:由,得或.因为表示圆心在极点半径为3的圆,表示过极点极角为的一条射线,故选B.考点:极坐标方程.6..的展开式中的系数是A.-20 B.-5 C.5 D.20参考答案:A【分析】利用二项式展开式的通项公式,求解所求项的系数即可【详解】由二项式定理可知:;要求的展开式中的系数,所以令,则;所以的展开式中的系数是是-20;故答案选A【点睛】本题考查二项式定理的通项公式的应用,属于基础题。7.等比数列{an}的前n项和为Sn,且4a1,2a2,a3成等差数列.若a1=1,则S4=()A.15 B.7 C.8 D.16参考答案:A【考点】等比数列的前n项和.【专题】等差数列与等比数列.【分析】利用4a1,2a2,a3成等差数列求出公比即可得到结论.【解答】解:∵4a1,2a2,a3成等差数列.a1=1,∴4a1+a3=2×2a2,即4+q2﹣4q=0,即q2﹣4q+4=0,(q﹣2)2=0,解得q=2,∴a1=1,a2=2,a3=4,a4=8,∴S4=1+2+4+8=15.故选:A【点评】本题考查等比数列的前n项和的计算,根据条件求出公比是解决本题的关键.8.在空间直角坐标系中,已知,,则,两点间的距离是A.
B.
C.
D.参考答案:A略9.正方体ABCD-A1B1C1D1的棱上到异面直线AB,CC1的距离相等的点的个数为
(
)A.2
B.3
C.4
D.5参考答案:C略10.如果直线(2a+5)x+(a-2)y+4=0与直线(2-a)x+(a+3)y-1=0互相垂直,则a的值等于(
)
A.2
B.-2
C.2,-2
D.2,0,-2参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11.下列说法中正确的有________①刻画一组数据集中趋势的统计量有极差、方差、标准差等;刻画一组数据离散程度统计量有平均数、中位数、众数等。②抛掷两枚硬币,出现“两枚都是正面朝上”、“两枚都是反面朝上”、“恰好一枚硬币正面朝上”的概率一样大③有10个阄,其中一个代表奖品,10个人按顺序依次抓阄来决定奖品的归属,则摸奖的顺序对中奖率没有影响。④向一个圆面内随机地投一个点,如果该点落在圆内任意一点都是等可能的,则该随机试验的数学模型是几何概型。参考答案:③④12.一个袋子内装有除颜色不同外其余完全相同的3个白球和2个黑球,从中不放回地任取两次,每次取一球,在第一次取到的是白球的条件下,第二次也取到白球的概率是
参考答案:13.=.参考答案:【考点】67:定积分.【分析】根据的几何意义求出其值即可.【解答】解:由题意得:的几何意义是以(0,0)为圆心,以3为半径的圆的面积的,而S圆=9π,故=,故答案为:.14.设D为不等式组表示的平面区域,区域D上的点与点(1,0)之间的距离的最小值为__________参考答案:略15.右图给出的是计算的值的一个程序框图,其中判断框内应填入的条件是
.参考答案:16.如图是一个长方体截去一个角后所得多面体的三视图,则该多面体的体积为__________;参考答案:17.已知直线,平分圆的周长,则取最小值时,双曲线的离心率为
。参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.等比数列{an}同时满足下列条件:a1+a6=33;a3a4=32.(1)求数列{an}的通项;(2)若4a2,2a3,a4构成等差数列,求{an}的前6项和S6.参考答案:【考点】等差数列与等比数列的综合.【专题】方程思想;分析法;等差数列与等比数列.【分析】(1)运用等比数列的通项公式,解方程可得首项和公比,即可得到所求通项;(2)由等差数列的中项性质,结合等比数列的通项公式,解方程可得公比为2,再由等比数列的求和公式,即可得到所求和.【解答】解:(1)设等比数列{an}的公比为q,由a3a4=a1a6,可得a1a6=32,a1+a6=33,解得a1=1,a6=32;或a1=32,a6=1.可得q5=32或q5=,解得q=2或q=,可得an=2n﹣1;或an=32?()n﹣1;(2)4a2,2a3,a4构成等差数列,可得4a3=4a2+a4,即有4a1q2=4a1q+a1q3,即q2﹣4q+4=0,解得q=2,即有an=2n﹣1;则{an}的前6项和S6==63.【点评】本题考查等比数列的通项公式和求和公式的运用,考查运算求解能力,属于基础题.19.如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD是等腰梯形,AD∥BC,AC⊥BD(Ⅰ)证明:BD⊥PC(Ⅱ)若AD=6,BC=2,直线PD与平面PAC所成的角为30°,求四棱锥P﹣ABCD的体积.参考答案:【考点】棱柱、棱锥、棱台的体积;直线与平面垂直的性质.【分析】(Ⅰ)推导出PA⊥BD,AC⊥BD,PA,从而BD⊥平面PAC,由此能证明BD⊥PC.(Ⅱ)设AC∩BD=O,连接PO,则∠DPO是直线PD和平面PAC所成的角,从而∠DPO=30°,推导出BD⊥PO,AC⊥BD,求出梯形ABCD的高,由此能求出四棱锥P﹣ABCD的体积.【解答】(本小题满分12分)证明:(Ⅰ)∵PA⊥平面ABCD,BD?平面ABCD,∴PA⊥BD,又AC⊥BD,PA,AC是平面PAC内的两条相交直线,∴BD⊥平面PAC,而PC?平面PAC,∴BD⊥PC.…解:(Ⅱ)设AC∩BD=O,连接PO,由(Ⅰ)知BD⊥平面PAC,∴∠DPO是直线PD和平面PAC所成的角,∴∠DPO=30°,由BD⊥平面PAC,PO?平面PAC,知BD⊥PO.在Rt△POD中,由∠DPO=30°,得PD=2OD.∵四边形ABCD是等腰梯形,AC⊥BD,∴△AOD,△BOC均为等腰直角三角形,从而梯形ABCD的高为AD+BC=×(6+2)=4,于是SABCD=×(6+2)×4=16.在等腰三角形AOD中,OD=AD=3,∴PD=2OD=6,PA===6,∴VP﹣ABCD=SABCD×PA=×16×6=32.…20.已知数列{an}的各项均为整数,其前n项和为Sn.规定:若数列{an}满足前r项依次成公差为1的等差数列,从第r﹣1项起往后依次成公比为2的等比数列,则称数列{an}为“r关联数列”.(1)若数列{an}为“6关联数列”,求数列{an}的通项公式;(2)在(1)的条件下,求出Sn,并证明:对任意n∈N*,anSn≥a6S6;(3)已知数列{an}为“r关联数列”,且a1=﹣10,是否存在正整数k,m(m>k),使得a1+a2+…+ak﹣1+ak=a1+a2+…+am﹣1+am?若存在,求出所有的k,m值;若不存在,请说明理由.参考答案:【考点】数列的应用.【专题】综合题;转化思想;综合法;等差数列与等比数列.【分析】(1)若数列{an}为“6关联数列”,{an}前6项为等差数列,从第5项起为等比数列,可得a6=a1+5,a5=a1+4,且,即,解得a1,即可求数列{an}的通项公式;(2)由(1)得(或,可见数列{anSn}的最小项为a6S6=﹣6,即可证明:对任意n∈N*,anSn≥a6S6;(3),分类讨论,求出所有的k,m值.【解答】解:(1)∵数列{an}为“6关联数列”,∴{an}前6项为等差数列,从第5项起为等比数列,∴a6=a1+5,a5=a1+4,且,即,解得a1=﹣3…∴(或).
…(2)由(1)得(或)…,{Sn}:﹣3,﹣5,﹣6,﹣6,﹣5,﹣3,1,9,25,…{anSn}:9,10,6,0,﹣5,﹣6,4,72,400,…,可见数列{anSn}的最小项为a6S6=﹣6,证明:,列举法知当n≤5时,(anSn)min=a5S5=﹣5;
…当n≥6时,,设t=2n﹣5,则.
…(3)数列{an}为“r关联数列”,且a1=﹣10,∵∴…①当k<m≤12时,由得(k+m)(k﹣m)=21(k﹣m)k+m=21,k,m≤12,m>k,∴或.②当m>k>12时,由2k﹣11﹣56=2m﹣11﹣56得m=k,不存在
…③当k≤12,m>12时,由,2m﹣10=k2﹣21k+112当k=1时,2m﹣10=92,m?N*;当k=2时,2m﹣10=74,m?N*;当k=3时,2m﹣10=58,m?N*;当k=4时,2m﹣10=44,m?N*;当k=5时,2m﹣10=25,m=15∈N*;当k=6时,2m﹣10=22,m?N*;当k=7时,2m﹣10=14,m?N*;当k=8时,2m﹣10=23,m=13∈N*;当k=9时,2m﹣10=22,m=12舍去;当k=10时,2m﹣10=2,m=11舍去当k=11时,2m﹣10=2,m=11舍去;当k=12时,2m﹣10=22,m=12舍去…综上所述,∴存在或或或.
…【点评】本题考查数列的应用,考查新定义,考查数列的通项,考查分类讨论的数学思想,难度大.21.已知双曲线的离心率是,且过,直线与双曲线交于两个不同的交点,满足(1)求双曲线的方程(2)求实数的取值范围参考答案:(2)联立,消去并整理得-------------6分设,则---------------------------------------------------------------------------------------9分
22.已知{
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论