版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第1页(共27页)2016-2017学年江苏省徐州市八年级(上)期中数学试卷一、选择题(本大题有8题,每小题3分,共24分.在每小题所给出的四个选中,恰有一项是符合题目要求的,请将正确选项前的字母代号填写在答题卡上)1.下列图形中,不是轴对称图形的是()A. B. C. D.2.等腰三角形的两边长分别为2、4,则它的周长为()A.8 B.10 C.8或10 D.以上都不对3.如果a、b、c是一个直角三角形的三边,则a:b:c等于()A.1:2:4 B.1:3:5 C.3:4:7 D.5:12:134.如图是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在()A.△ABC的三条中线的交点 B.△ABC三边的中垂线的交点C.△ABC三条高所在直线的交点 D.△ABC三条角平分线的交点5.如图,△ABD≌△ACE,∠AEC=110°,则∠DAE的度数为()A.30° B.40° C.50° D.60°6.如图,△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为()A.5 B.6 C.8 D.107.如图,将两根钢条AA'、BB'的中点O连在一起,使AA'、BB'可以绕着点O自由转动,就做成了一个测量工件,则A'B'的长等于内槽宽AB,那么判定△AOB≌△A'OB'的理由是()A.边角边 B.角边角 C.边边边 D.角角边8.如图,∠BAC与∠CBE的平分线相交于点P,BE=BC,PB与CE交于点H,PG∥AD交BC于F,交AB于G,下列结论:①GA=GP;②S△PAC:S△PAB=AC:AB;③BP垂直平分CE;④FP=FC;其中正确的判断有()A.只有①② B.只有③④ C.只有①③④ D.①②③④二、填空题(本大题有8小题,每小题3分,共24分)9.木工师傅在做完门框后为防止变形,常如图所示那样钉上两条斜拉的木板条,这样做的数学依据是.10.若直角三角形斜边长为6cm,则斜边上的中线长为cm.11.等腰三角形的一个角是80°,则它的底角是.12.如图,∠1=∠2,要使△ABD≌△ACD,需添加的一个条件是(只添一个条件即可).13.如图,将一根长12厘米的筷子置于底面直径为6厘米,高为8厘米的圆柱形杯子中,则筷子露在杯子外面的长度至少为厘米.14.等腰三角形腰长10cm,底边16cm,则腰上的高是.15.如图,在△ABC中,∠C=90°,AB=10,AD是△ABC的一条角平分线.若CD=3,则△ABD的面积为.16.勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=3,AC=4,点D,E,F,G,H,I都在矩形KLMJ的边上,则矩形KLMJ的面积为.三、解答题(本大题共有9小题,共72分.)17.如图,AC=AE,∠1=∠2,AB=AD.求证:BC=DE.18.如图,在△ABC中,CF⊥AB,BE⊥AC,M、N分别是BC、EF的中点,试说明MN⊥EF.19.在4×4的方格中有五个同样大小的正方形如图摆放,请你添加一个正方形到空白方格中,使它与其余五个正方形组成的新图形是一个轴对称图形,请在备用图中画出4种不同的轴对称图形.20.作图题:如图所示是每一个小方格都是边长为1的正方形网格,(1)利用网格线作图:①在BC上找一点P,使点P到AB和AC的距离相等;②在射线AP上找一点Q,使QB=QC.(2)在(1)中连接CQ与BQ,试说明△CBQ是直角三角形.21.在等边三角形ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ.(1)求证:△ABP≌△CAQ;(2)请判断△APQ是什么形状的三角形?试说明你的结论.22.铁路上A,B两点相距25km,C、D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,现在要在铁路AB上建一个土特产品收购站E,使得C,D两村到E站的距离相等,请画出E点位置(要求尺规作图,保留作图痕迹)并求出E站应建在离A站多少千米处?23.如图,在△ABC中,DM、EN分别垂直平分AC和BC,交AB于M、N两点,DM与EN相交于点F.(1)若△CMN的周长为15cm,求AB的长;(2)若∠MFN=70°,求∠MCN的度数.24.(1)如图①,△ABC中,AB=AC,∠ABC、∠ACB的平分线交于O点,过O点作EF∥BC交AB、AC于E、F.图中有个等腰三角形.猜想:EF与BE、CF之间有怎样的关系,并说明理由.(2)如图②,若AB≠AC,其他条件不变,图中有个等腰三角形.它们是.EF与BE、CF间的关系是.(3)如图③,若△ABC中∠ABC的平分线与三角形外角平分线交于O,过O点作OE∥BC交AB于E,交AC于F.这时图中有个等腰三角形.EF与BE、CF关系又如何?说明你的理由.25.如图,△ABC中,∠ACB=90°,AB=5cm,BC=3cm,若点P从点A出发,以每秒2cm的速度沿折线A﹣C﹣B向点B运动,设运动时间为t秒(t>0)(1)在AC上是否存在点P,使得PA=PB?若存在,求出t的值;若不存在,说明理由;(2)若点P恰好在△ABC的角平分线上,请求出t的值,说明理由.
2016-2017学年江苏省徐州市八年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题有8题,每小题3分,共24分.在每小题所给出的四个选中,恰有一项是符合题目要求的,请将正确选项前的字母代号填写在答题卡上)1.下列图形中,不是轴对称图形的是()A. B. C. D.【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A是中心对称图形,不是轴对称图形,B、C、D都是轴对称图形,故选:A.2.等腰三角形的两边长分别为2、4,则它的周长为()A.8 B.10 C.8或10 D.以上都不对【考点】等腰三角形的性质;三角形三边关系.【分析】由于题中没有指明哪边是底哪边是腰,则应该分两种情况进行分析.【解答】解:①当2为腰时,2+2=4,故此种情况不存在;②当4为腰时,符合题意,则周长是2+4+4=10.故选B.3.如果a、b、c是一个直角三角形的三边,则a:b:c等于()A.1:2:4 B.1:3:5 C.3:4:7 D.5:12:13【考点】勾股定理.【分析】将四个选项的数字按照勾股定理进行计算,符合a2+b2=c2的即为正确答案.【解答】解:A、∵12+22≠42,∴1:2:4不是直角三角形的三条边;故本选项错误;B、∵12+32≠42,∴1:3:5不是直角三角形的三条边;故本选项错误;C、∵32+42≠72,∴3:4:7不是直角三角形的三条边;故本选项错误;D、∵52+122=132,∴1:2:4是直角三角形的三条边;故本选项正确.故选D.4.如图是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在()A.△ABC的三条中线的交点 B.△ABC三边的中垂线的交点C.△ABC三条高所在直线的交点 D.△ABC三条角平分线的交点【考点】角平分线的性质;作图—应用与设计作图.【分析】由于凉亭到草坪三条边的距离相等,所以根据角平分线上的点到边的距离相等,可知是△ABC三条角平分线的交点.由此即可确定凉亭位置.【解答】解:∵凉亭到草坪三条边的距离相等,∴凉亭选择△ABC三条角平分线的交点.故选D.5.如图,△ABD≌△ACE,∠AEC=110°,则∠DAE的度数为()A.30° B.40° C.50° D.60°【考点】全等三角形的性质.【分析】根据邻补角的定义求出∠AED,再根据全等三角形对应边相等可得AD=AE,然后利用等腰三角形的两底角相等列式计算即可得解.【解答】解:∵∠AEC=110°,∴∠AED=180°﹣∠AEC=180°﹣110°=70°,∵△ABD≌△ACE,∴AD=AE,∴∠AED=∠ADE,∴∠DAE=180°﹣2×70°=180°﹣140°=40°.故选B.6.如图,△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为()A.5 B.6 C.8 D.10【考点】勾股定理;等腰三角形的性质.【分析】根据等腰三角形的性质得到AD⊥BC,BD=CD,根据勾股定理即可得到结论.【解答】解:∵AB=AC,AD是∠BAC的平分线,∴AD⊥BC,BD=CD,∵AB=5,AD=3,∴BD==4,∴BC=2BD=8,故选C.7.如图,将两根钢条AA'、BB'的中点O连在一起,使AA'、BB'可以绕着点O自由转动,就做成了一个测量工件,则A'B'的长等于内槽宽AB,那么判定△AOB≌△A'OB'的理由是()A.边角边 B.角边角 C.边边边 D.角角边【考点】全等三角形的判定.【分析】因为是用两钢条中点连在一起做成一个测量工件,可求出两边分别对应相等,再加上对顶角相等,可判断出两个三角形全等,且用的是SAS.【解答】解:∵两钢条中点连在一起做成一个测量工件,∴OA′=OB,OB′=OA,∵∠AOB=B′OA′,∴△AOB≌△B′OA′.所以AB的长等于内槽宽A'B',用的是SAS的判定定理.故选A8.如图,∠BAC与∠CBE的平分线相交于点P,BE=BC,PB与CE交于点H,PG∥AD交BC于F,交AB于G,下列结论:①GA=GP;②S△PAC:S△PAB=AC:AB;③BP垂直平分CE;④FP=FC;其中正确的判断有()A.只有①② B.只有③④ C.只有①③④ D.①②③④【考点】角平分线的性质;线段垂直平分线的性质.【分析】利用角平分线的性质对①②③④进行一一判断,从而求解.【解答】解:①∵AP平分∠BAC∴∠CAP=∠BAP∵PG∥AD∴∠APG=∠CAP∴∠APG=∠BAP∴GA=GP②∵AP平分∠BAC∴P到AC,AB的距离相等∴S△PAC:S△PAB=AC:AB③∵BE=BC,BP平分∠CBE∴BP垂直平分CE(三线合一)④∵∠BAC与∠CBE的平分线相交于点P,可得点P也位于∠BCD的平分线上∴∠DCP=∠BCP又PG∥AD∴∠FPC=∠DCP∴FP=FC故①②③④都正确.故选D.二、填空题(本大题有8小题,每小题3分,共24分)9.木工师傅在做完门框后为防止变形,常如图所示那样钉上两条斜拉的木板条,这样做的数学依据是三角形具有稳定性.【考点】三角形的稳定性.【分析】根据三角形具有稳定性进行解答.【解答】解:木工师傅在做完门框后为防止变形,常如图所示那样钉上两条斜拉的木板条,这样做的数学依据是三角形具有稳定性,故答案为:三角形具有稳定性.10.若直角三角形斜边长为6cm,则斜边上的中线长为3cm.【考点】直角三角形斜边上的中线.【分析】根据直角三三角形斜边上的中线等于斜边的一半可求得答案.【解答】解:∵直角三角形斜边长为6cm,∴斜边上的中线长=×6=3(cm),故答案为:3.11.等腰三角形的一个角是80°,则它的底角是50°或80°.【考点】等腰三角形的性质.【分析】已知给出了一个内角是80°,没有明确是顶角还是底角,所以要进行分类讨论,分类后还有用内角和定理去验证每种情况是不是都成立.【解答】解:由题意知,分两种情况:(1)当这个80°的角为顶角时,则底角=÷2=50°;(2)当这个80°的角为底角时,则另一底角也为80°.故答案为:50°或80°.12.如图,∠1=∠2,要使△ABD≌△ACD,需添加的一个条件是CD=BD(只添一个条件即可).【考点】全等三角形的判定.【分析】由已知条件具备一角一边分别对应相等,还缺少一个条件,可添加DB=DC,利用SAS判定其全等.【解答】解:需添加的一个条件是:CD=BD,理由:∵∠1=∠2,∴∠ADC=∠ADB,在△ABD和△ACD中,,∴△ABD≌△ACD(SAS).故答案为:CD=BD.13.如图,将一根长12厘米的筷子置于底面直径为6厘米,高为8厘米的圆柱形杯子中,则筷子露在杯子外面的长度至少为2厘米.【考点】勾股定理的应用.【分析】首先应根据勾股定理求得圆柱形水杯的最大线段的长度,即=10,故筷子露在杯子外面的长度至少为多少可求出.【解答】解:如图所示,筷子,圆柱的高,圆柱的直径正好构成直角三角形,∴勾股定理求得圆柱形水杯的最大线段的长度,即=10cm,∴筷子露在杯子外面的长度至少为12﹣10=2cm,故答案为2.14.等腰三角形腰长10cm,底边16cm,则腰上的高是9.6cm.【考点】勾股定理;等腰三角形的性质.【分析】等腰三角形ABC,AB=AC,要求三角形的面积,可以先作出BC边上的高AD,则在Rt△ADB中,利用勾股定理就可以求出高AD,就可以求出三角形的面积,进一步得到腰上的高.【解答】解:作AD⊥BC于D,∵AB=AC,∴BD=BC=8cm,∴AD==6cm,∴S△ABC=BC•AD=48cm2,腰上的高是48×2÷10=9.6cm.故答案为:9.6cm.15.如图,在△ABC中,∠C=90°,AB=10,AD是△ABC的一条角平分线.若CD=3,则△ABD的面积为15.【考点】角平分线的性质.【分析】要求△ABD的面积,现有AB=10可作为三角形的底,只需求出该底上的高即可,需作DE⊥AB于E.根据角平分线的性质求得DE的长,即可求解.【解答】解:作DE⊥AB于E.∵AD平分∠BAC,DE⊥AB,DC⊥AC,∴DE=CD=3.∴△ABD的面积为×3×10=15.故答案是:15.16.勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=3,AC=4,点D,E,F,G,H,I都在矩形KLMJ的边上,则矩形KLMJ的面积为110.【考点】勾股定理的证明.【分析】延长AB交KF于点O,延长AC交GM于点P,可得四边形AOLP是正方形,然后求出正方形的边长,再求出矩形KLMJ的长与宽,然后根据矩形的面积公式列式计算即可得解.【解答】解:如图,延长AB交KF于点O,延长AC交GM于点P,所以,四边形AOLP是正方形,边长AO=AB+AC=3+4=7,所以,KL=3+7=10,LM=4+7=11,因此,矩形KLMJ的面积为10×11=110.故答案是:110.三、解答题(本大题共有9小题,共72分.)17.如图,AC=AE,∠1=∠2,AB=AD.求证:BC=DE.【考点】全等三角形的判定与性质.【分析】先证出∠CAB=∠DAE,再由SAS证明△BAC≌△DAE,得出对应边相等即可.【解答】证明:∵∠1=∠2,∴∠CAB=∠DAE,在△BAC和△DAE中,,∴△BAC≌△DAE(SAS),∴BC=DE.18.如图,在△ABC中,CF⊥AB,BE⊥AC,M、N分别是BC、EF的中点,试说明MN⊥EF.【考点】直角三角形斜边上的中线;等腰三角形的性质.【分析】连接MF、ME,根据直角三角形斜边上的中线等于斜边的一半可得到MF=BC=ME,再根据等腰三角形的三线合一的性质即可推出MN⊥EF.【解答】证明:连接MF、ME,∵CF⊥AB,在Rt△BFC中,M是BC的中点,∴MF=BC(斜边中线等于斜边一半),同理ME=BC,∴ME=MF,∵N是EF的中点,∴MN⊥EF.19.在4×4的方格中有五个同样大小的正方形如图摆放,请你添加一个正方形到空白方格中,使它与其余五个正方形组成的新图形是一个轴对称图形,请在备用图中画出4种不同的轴对称图形.【考点】利用轴对称设计图案.【分析】根据轴对称图形的性质找出格点即可.【解答】解:如图所示..20.作图题:如图所示是每一个小方格都是边长为1的正方形网格,(1)利用网格线作图:①在BC上找一点P,使点P到AB和AC的距离相等;②在射线AP上找一点Q,使QB=QC.(2)在(1)中连接CQ与BQ,试说明△CBQ是直角三角形.【考点】作图—复杂作图;角平分线的性质;线段垂直平分线的性质.【分析】(1)根据网格特点作出∠A的角平分线与BC的交点就是点P,作BC的垂直平分线与AP的交点就是点Q.(2)首先利用勾股定理计算出CQ2、BQ2、BC2,然后利用勾股定理逆定理可得△CBQ是直角三角形.【解答】解:(1)点P就是所要求作的到AB和AC的距离相等的点,点Q就是所要求作的使QB=QC的点.(2)连接CQ、BQ,∵CQ2=12+52=26,BQ2=12+52=26,BC2=62+42=36+16=52,∴CQ2+BQ2=BC2,∴∠CQB=90°,∴△CBQ是直角三角形.21.在等边三角形ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ.(1)求证:△ABP≌△CAQ;(2)请判断△APQ是什么形状的三角形?试说明你的结论.【考点】全等三角形的判定与性质;等边三角形的判定与性质.【分析】(1)根据等边三角形的性质可得AB=AC,再根据SAS证明△ABP≌△ACQ;(2)根据全等三角形的性质得到AP=AQ,再证∠PAQ=60°,从而得出△APQ是等边三角形.【解答】证明:(1)∵△ABC为等边三角形,∴AB=AC,∠BAC=60°,在△ABP和△ACQ中,,∴△ABP≌△ACQ(SAS),(2)∵△ABP≌△ACQ,∴∠BAP=∠CAQ,AP=AQ,∵∠BAP+∠CAP=60°,∴∠PAQ=∠CAQ+∠CAP=60°,∴△APQ是等边三角形.22.铁路上A,B两点相距25km,C、D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,现在要在铁路AB上建一个土特产品收购站E,使得C,D两村到E站的距离相等,请画出E点位置(要求尺规作图,保留作图痕迹)并求出E站应建在离A站多少千米处?【考点】作图—应用与设计作图.【分析】直接利用垂直平分线的作法得出符合题意的图形,再利用垂直平分线的性质结合勾股定理得出答案.【解答】解:如图所示:点E即为所求;∵AD=15km,BC=10km,AB=25km,∴设AE=xkm,则EB=(25﹣x)km,∴AE2+AD2=EC2+BE2,∴x2+152=(25﹣x)2+102,解得:x=10,答:收购站E离A点的距离为10km.23.如图,在△ABC中,DM、EN分别垂直平分AC和BC,交AB于M、N两点,DM与EN相交于点F.(1)若△CMN的周长为15cm,求AB的长;(2)若∠MFN=70°,求∠MCN的度数.【考点】线段垂直平分线的性质.【分析】(1)根据线段垂直平分线上的点到线段两端点的距离相等可得AM=CM,BN=CN,然后求出△CMN的周长=AB;(2)根据三角形的内角和定理列式求出∠MNF+∠NMF,再求出∠A+∠B,根据等边对等角可得∠A=∠ACM,∠B=∠BCN,然后利用三角形的内角和定理列式计算即可得解.【解答】解:(1)∵DM、EN分别垂直平分AC和BC,∴AM=CM,BN=CN,∴△CMN的周长=CM+MN+CN=AM+MN+BN=AB,∵△CMN的周长为15cm,∴AB=15cm;(2)∵∠MFN=70°,∴∠MNF+∠NMF=180°﹣70°=110°,∵∠AMD=∠NMF,∠BNE=∠MNF,∴∠AMD+∠BNE=∠MNF+∠NMF=110°,∴∠A+∠B=90°﹣∠AMD+90°﹣∠BNE=180°﹣110°=70°,∵AM=CM,BN=CN,∴∠A=∠ACM,∠B=∠BCN,∴∠MCN=180°﹣2(∠A+∠B)=180°﹣2×70°=40°.24.(1)如图①,△ABC中,AB=AC,∠ABC、∠ACB的平分线交于O点,过O点作EF∥BC交AB、AC于E、F.图中有5个等腰三角形.猜想:EF与BE、CF之间有怎样的关系,并说明理由.(2)如图②,若AB≠AC,其他条件不变,图中有2个等腰三角形.它们是△BEO,△CFO.EF与BE、CF间的关系是EF=BE+CF.(3)如图③,若△ABC中∠ABC的平分线与三角形外角平分线交于O,过O点作OE∥BC交AB于E,交AC于F.这时图中有2个等腰三角形.EF与BE、CF关系又如何?说明你的理由.【考点】三角形综合题.【分析】(1)由等腰三角形的性质得到∠ABC=∠ACB,根据平行线的性质得到∠AEF=∠ABC,∠AFE=∠ACB,得到∠AEF=∠AFE,得出AE=AF,根据平行线的性质得到∠EOB=∠OBC,∠FOC=∠OCB,由角平分线的定义得到∠EBO=∠OBC,∠FCO=∠OCB,得到∠EBO=∠EOB,∠FOC=∠FCO,得到∠OBC=∠OCB,得出OE=BE,OF=CF,OB=OC,即可得到结论.(2)等腰三角形有△BEO和△CFO,根据角平分线性质和平行线性质推出∠EBO=∠EOB,∠FOC=∠FCO,根据等角对等边推出即可;根据BE=OE,CF=OF即可得出EF与BE、CF之间的关系;(3)等腰三角形有△BEO和△CFO,根据角平分线性质和平行线性质推出∠EBO=∠EOB,∠FOC=∠FCO,根据等角对等边推出即可;根据BE=OE,CF=OF即可得出EF与BE、CF之间的关系.【解答】解:(1)∵AB=AC,∴∠ABC=∠ACB∵EF∥BC,∴∠AEF=∠ABC,∠AFE=∠ACB,∴∠AEF=∠AFE,∵EF∥BC,∴∠EOB=∠OBC,∠FOC=∠OCB,∵∠ABC和∠ACB的平分线交于点O,∴∠EBO=∠OBC,∠FCO=∠OCB,∴∠EBO=∠EOB,∠FOC=∠FCO,∵∠ABC=∠ACB,∴∠OBC=∠OCB,∴BE=OE,OF=CF,∴△ABC,△AEF,△BOC,△BEO,△CFO是等腰三角形;故答案为:5;猜想:EF=BE+CF;理由如下:∵BE=OE,OF=CF,∴EF=OE+OF=BE+CF;(2)∵BO平分∠ABC,CO平分∠ACB,∴∠EBO=∠OBC,∠FCO=∠OCB,∵EF∥BC,∴∠EOB=∠OBC,∠FOC=∠OCB,∴∠EBO=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论