版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第九章时间序列分析预测法第1页,课件共46页,创作于2023年2月定量预测概述定量预测又称数学模型预测法。它是运用一定的统计和数学方法,通过建立数学分析模型来描述和预测事物变化发展规律的一种预测方法。因此有两个明显的特点:受人的主观因素影响较小,结果比较客观;对数据的要求、预测者专业能力的要求比较高由时间序列预测方法和回归分析预测方法两大类组成。第2页,课件共46页,创作于2023年2月定量预测方法时间序列预测法回归分析预测法算术平均预测(简单、移动、指数平滑)季节分析预测(水平、趋势变动)马尔可夫预测(市场占有率预测)趋势预测(直线拟合、指数曲线拟合)一元线型回归预测多元线型回归预测非线性回归预测自相关回归预测第3页,课件共46页,创作于2023年2月最早的时间序列分析可以追溯到7000年前的古埃及。古埃及人把尼罗河涨落的情况逐天记录下来,就构成所谓的时间序列。对这个时间序列长期的观察使他们发现尼罗河的涨落非常有规律。由于掌握了尼罗河泛滥的规律,使得古埃及的农业迅速发展,从而创建了埃及灿烂的史前文明。按照时间的顺序把随机事件变化发展的过程记录下来就构成了一个时间序列。对时间序列进行观察、研究,找寻它变化发展的规律,预测它将来的走势就是时间序列分析。9.1时间序列预测法概述第4页,课件共46页,创作于2023年2月时间序列预测方法,是把统计资料按时间发生的先后进行排序得出的一连串数据,利用该数据序列外推到预测对象未来的发展趋势。一般可分为确定性时间序列预测法和随机时间序列预测法。确定性时间序列法有:移动平均法、指数平滑法、差分指数平滑法、自适应过滤法、直线模型预测法、成长曲线模型预测和季节变动预测法等等。随机时间序列是通过建立随机时间序列模型来预测,方法和数据要求都很高,精度也很高,应用非常广泛。第5页,课件共46页,创作于2023年2月时间序列预测法的优缺点优点:在分析现在、过去、未来的联系时,以及未来的结果与过去、现在的各种因素之间的关系时,效果比较好。数据处理时,并不十分复杂缺点:反映了对象线性的、单向的联系预测稳定的、在时间方面稳定延续的过程并不适合进行长期预测第6页,课件共46页,创作于2023年2月9.2移动平均预测法9.2.1算术平均数法(MethodofSimpleAverage)
大前前昨今明预测模型:适用范围:预测对象的历史数据呈水平型变动状态,逐期增长量大体相同的情况;短期预测;可推广应用趋势型变动的历史数据。
已知未知第7页,课件共46页,创作于2023年2月1999~2006年我国水电消费量在能源消费总量中所占的比重如下表所示,使用算术平均法预测2007年水电消费量在能源消费总量中所占的比重。年份19992000200120022003200420052006比重(%)4.95.14.84.95.25.76.15.9解:根据预测模型即我国2007年水电消费在能源消费总量中所占比重为5.3%。案例第8页,课件共46页,创作于2023年2月9.2.2简单移动平均预测移动平均预测(MethodofSingleMovingAverage)是利用过去若干期实际的平均值,来预测当期的值。方法上与算术平均法类似。比如,1992~1996年我国市镇人口在总人口所占的比重如表所示,试推广应用移动平均法预测1997年我国市镇人口在总人口中所占的比重。年份 1992 1993 1994 1995 1996比重(%) 27.63 28.14 28.62 29.04 29.371992~1996年市镇人口在总人口中所占比重分别为27.63%、28.14%、28.62%、29.04%和29.37%,平均比重为:
则1997年市镇人口在总人口中所占比重为:28.56%第9页,课件共46页,创作于2023年2月一般可以通过比较预测均方差(MSE)和绝对均差(MAE),来分析预测的误差。简单移动平均预测的明显缺点是:它假设平均数内的各项观察值对于未来都具有相同的影响,但一般在实际中,往往是越接近预测期的观察值对未来的影响越大,因此又有其它方法来修正。第10页,课件共46页,创作于2023年2月9.2.3加权移动平均预测根据时间顺序排列的历史数据,每个数据对预测值的重要性是不同的,将各个数据赋予不同的权重,可以更准确的预测。往往会对于离预测期越近的数据赋予越大的权重。这样可以更接近事物真实的发展趋势。第11页,课件共46页,创作于2023年2月案例2001~2006年我国原煤占能源生产总量的比重如表所示,若给予2001~2006年原煤占能源生产总量比重的权数分别为1、2、3、4、5、6,试预测2007年原煤所占的比重。年份 2001 2002 2003 20042005 2006比重(%)74.1 74.3 74.0 74.6 75.3 74.8根据预测模型可得:即2007年我国原煤占能源生产总量的比重为74.7%第12页,课件共46页,创作于2023年2月可以看出,加权移动平均的特点是:强调时间序列近期的变动对未来具有较大影响,从而更为合理。但是有时会受加权系数选择的影响。总之,简单移动平均和加权平均最适用于没有明显趋势的、比较平稳的时间序列,如果时间序列明显表现出某种趋势性特征,或者波动很大,预测效果就会很差。第13页,课件共46页,创作于2023年2月趋势性数列平稳性数列第14页,课件共46页,创作于2023年2月9.3指数平滑预测法指数平滑(MethodofExponentialSmoothing)是一种特殊的加权平均法,特点是对离预测期较近的历史数据给予较大的权数,对较远的给予较小的权数,权数由近到远呈指数递减,所以称之为指数平滑。有着非常广泛的运用。一般有简单(一次)指数平滑(SimpleExponentialSmoothing),二次指数平滑(DoubleExponentialSmoothing)和更高次的指数平滑。第15页,课件共46页,创作于2023年2月9.3.1简单指数平滑简单指数平滑的基本公式为:也可表示为:t期估算值=a*(t期实际值)+(1-a)*(t-1期估算值)其中,a为平滑常数。可以看出,本期的简单平滑值等于本期的实际值与上一期平滑值的加权平均,权数由a决定。第16页,课件共46页,创作于2023年2月可以发现,这实际上是时间序列的观察值和初始平滑值的加权平均。并且这一权数是递减的,距离估算期越远的观察值对当前估算结果的影响越小。如,当a=0.8时,分别为,0.8,0.16,0.032,0.0064。所以,可以起到类似加权移动平均的作用。对于初始值。假定2000年的销售额600万为初始值。则,下一期的预测值为:
第17页,课件共46页,创作于2023年2月案例1991~1996年我国人均布产量如表第⑵栏所示,试用一次指数平滑法(a分别取0.4和0.8)计算1991~1996年的理论预测值,并预测1997年我国人均布产量。为比较预测效果,分别计算a取0.4和0.8时的均方误差。年份人均布产量Yta=0.4a=0.8St误差平方St误差平方199119921993199419951996199715.7916.3717.2317.7321.5917.1715.79*16.0216.5017.018.8418.1700.341.461.5121.072.7915.79*16.2517.0317.5920.7917.8900.340.960.4916.0013.10合计27.1730.89均方误差4.535.15第18页,课件共46页,创作于2023年2月简单指数平滑预测准确性相当程度上取决于a的值,一般而言,如果时间序列是比较平稳的,应尽量选择比较小的a值,这样可以降低指数平滑的敏感性;而当时间序列的波动比较大时,应尽可能选择较大的a值,这样可以使预测结果能比较迅速的对新情况做出调整。但是a值取得过大,又容易丧失整个序列的趋势性。根据经验,选取的a值一般在0.3~0.5之间比较理想。第19页,课件共46页,创作于2023年2月简单指数平滑的局限性简单指数平滑的缺点是比较适用于时间序列趋势不明显的场合,而当序列明显表现出线型趋势时,简单指数平滑预测值总会落后于实际值的变动。例如,预测某省农民家庭人均食品支出额,假如a取0.9。年份食品支出预测值(a=0.9)绝对误差1999243.29-02000277.82243.29*34.532001320.39274.3746.022002389.09315.7973.302003444.84381.7663.082004496.23438.5357.70绝对均差45.77第20页,课件共46页,创作于2023年2月9.3.2布朗线型指数平滑在时间序列呈现出随趋势变动的情况下,通常采用布朗指数平滑(Brown’sLinearExponentialSmoothing),也称二次指数平滑。首先先计算出简单和二次指数平滑值之后,再建立趋势方程:T为时间间隔第21页,课件共46页,创作于2023年2月可以通过计算出的简单和二次指数平滑值来确定系数a,b例如,2003年1月销售量为60,2月为70,a=0.5。则:
通过趋势方程对3月份进行预测:第22页,课件共46页,创作于2023年2月案例预测某省农民家庭人均食品支出额,假如a取0.8。年份食品支出S1a=0.8S2a=0.8abY绝对误差1999243.29243.29*243.29*243.2902000277.82270.91265.39276.4322.08243.2934.522001320.39310.49301.47319.5136.08298.5121.882002389.09373.37358.99387.7557.52355.5933.502003444.84430.55416.24444.8657.24455.270.432004496.23483.09469.72496.4653.48502.105.872006603.42平均绝对误19.24第23页,课件共46页,创作于2023年2月9.3.3三次指数平滑二次指数平滑既解决了对有明显呈趋势变动的时间序列的预测,又解决了一次指数平滑只能预测一期的不足。但如果时间序列呈非线性趋势时,就需要采用更高次的指数平滑方法。三次指数平滑(TripleExponentialSmoothing)第24页,课件共46页,创作于2023年2月9.4马尔可夫预测法9.4.1马尔可夫预测法基本原理马尔可夫:俄国著名数学家马尔可夫过程:以马尔可夫名字命名的一种特殊的事物发展过程。已知现在状态就可以预测将来的状态,无须是否知道过去的状态。而这种事物发展的未来状态只与现在有关而与过去无关的性质被称为,无后效性。例如,中国象棋中的“马”。具有无后效性的事物的发展过程称为马尔可夫过程,马尔可夫过程主要用于企业产品的市场占有率的预测。第25页,课件共46页,创作于2023年2月假定工大1万学生,每人每月用一支牙膏,并且只使用佳洁士与高露洁,根据12月调查,有7000人使用佳洁士,3000人使用高露洁;同时调查发现,7000使用佳洁士的人中,有30%下月准备改用高露洁,而3000使用高露洁的人中,有40%下月准备改用佳洁士,预测高露洁的市场。可以得到转移概率矩阵:B=[]0.60.40.30.7拟用现用高露洁牙膏佳洁士牙膏高露洁牙膏60%40%佳洁士牙膏30%70%第26页,课件共46页,创作于2023年2月用转移概率矩阵可以预测市场占有率的变化预测下个月高露洁牙膏的使用人数为:3000×60%+7000×30%=3900人预测下个月佳洁士牙膏的使用人数为:3000×40%+7000×70%=6100人(3000,7000)[]=(3900,6100)如果再预测2月份的情况:(3000,7000)[][]=(4170,5830)0.60.40.30.70.60.40.30.70.60.40.30.7第27页,课件共46页,创作于2023年2月9.4.2长期市场占有率预测根据市场调查得知,两种品牌的市场占有率分别为0.3,0.7,则占有率向量为:A=(0.3,0.7)转移概率矩阵为B,则K个月后市场占有率为:AB假定X=(x1,x2)为稳定后的市场占有率,则XB=X(X1,X2)[]=(x1,x2)解二元一次方程可求出(x1,x2)=(3/7,4/7)k0.60.40.30.7第28页,课件共46页,创作于2023年2月在市场营销实战中,市场上的品牌往往有十几种甚至几十种。如果有20种的话,那转移概率矩阵就是一个20×20的矩阵,计算非常麻烦。但是,一般我们只会关心其中的一种或两种品牌,那简便处理,我们可以把其它品牌一起归为“其它”,这样矩阵就是2×2或是3×3的矩阵。第29页,课件共46页,创作于2023年2月课堂练习某食品厂的W牌果奶在市场份额为20%。该厂通过市场调查发现,其顾客中有10%下月转向购买其他牌号的果奶;但与此同时,原先购买其他牌号的果奶的消费每月有5%转向购买W牌果奶。(1)写出转移概率的矩阵。(2)预测该厂下个月的市场占有率。(3)计算市场占有率变化趋于稳定后的该厂果奶的长期占有率。第30页,课件共46页,创作于2023年2月9.5季节分析预测法季节分析预测法,又称季节变动预测法,是根据历史数据中所包含的季节变动规律性,对预测目标的未来状况作出预测的方法。很多产品都表现出很明显的季节性:季节生产常年消费——粮食茶叶常年生产季节消费——空调旅游季节生产季节消费——冷饮月饼掌握商品季节变动的规律性,科学制订生产经营决策,对企业的经济效益和社会效益具有重要意义。第31页,课件共46页,创作于2023年2月9.5.1季节分析预测衡量指标一、季节指数季节指数是一种以相对数表示的季节变动衡量指标。表明各季节变量与全年平均值的相对关系。季节指数=(历年同季平均数/全时期总平均数)×100%或季节指数=(历年同季平均数/趋势值)×100%季节指数总是围绕100%上下波动。如果指数大于100%则表明该季节为旺季,否则为淡季。第32页,课件共46页,创作于2023年2月二、季节变差季节变差是以绝对数表示的季节变动衡量指标。季节变差=历年同季平均数-全时期总平均数或季节变差=历年同季平均数-趋势值如果某季的季节变差大于零,则表明该季为旺季,否则为淡季。三、季节比重是对历年同季季节比例加以平均的结果,反映了季节变量占全年总值的比例,衡量季节的变动规律。季节比重=历年同季季节比例之和÷年份数如果某季季节比重大于25%,则表明该季属旺季,否则为淡季第33页,课件共46页,创作于2023年2月9.5.2水平型季节分析预测法季节分析预测有水平型、趋势型季节分析预测水平型季节变动是指以年为间隔单位的历史数据在总体上是呈水平发展的,趋势变动因素不明显,却含有随季节不规则变动的季节变动因素。季节分析预测就是用以上三种指标来反映这种季节变动因素,分为季节指数预测法、季节变差预测法和季节比重预测法。第34页,课件共46页,创作于2023年2月一、季节指数预测法首先,现计算出季节指数。可以用按季节平均法季节指数=(季节平均值/全时期季平均值)×100%或是全年比率平均法。季节指数=历年各季比率的平均值案例:近年来某百货商店的销售额大幅度上升,2004年销售额达8亿多元,比2000年增长85.96%。但是随着人民生活水平的提高和消费习惯的变化,购买成衣的消费者日益增多,从而使成衣的需求呈水平型发展,该店女装部2000年~2004年分季销售额资料如下表第2)至5)栏所示,试用按季平均法测算季节指数。第35页,课件共46页,创作于2023年2月季节年份一季度二季度三季度四季度合计全年平均1)2)3)4)5)6)7)2000354.94370.18312.08352.161389.36347.342001338.96457.59269.26442.121507.93376.982002432.97398.50317.83467.421616.72404.182003368.58416.18216.55390.291391.60347.902004354.42415.72186.53356.211312.88328.22合计1849.872058.171302.252008.207218.491804.92季平均数369.72411.63260.45401.641443.69360.92季节指数%102.51114.0572.16111.28400.00100.00第36页,课件共46页,创作于2023年2月其测算步骤是:⑴计算历年同季的合计数和平均数⑵计算全时期20个季的季平均数即:⑶计算各季的季节指数,如一季度指数为:
第37页,课件共46页,创作于2023年2月季节年份一季度二季度三季度四季度全年平均1)2)3)4)5)6)1993102.19106.5889.85101.39100.00199489.91121.3871.43117.28100.001995107.1298.5978.64115.65100.001996105.94119.6362.24112.18100.001997107.98126.6658.83108.53100.00合计513.14572.84358.99555.03500.00季节指数102.63114.5771.80111.01100.00第38页,课件共46页,创作于2023年2月计算步骤为:⑴计算历年各季比率计算公式为:⑵计算历年同季季节比率和⑶计算各季季节指数,计算公式为:如一季度的季节指数为:
第39页,课件共46页,创作于2023年2月然后,用季节指数进行预测一般情况下,有两种情况:1、已知预测目标全年预测值,利用季节指数预测该年各季节的预测值。某季预测值=(年预测值/4)*该季节指数同样的案例:该百货商场女装部预测2005年销售额为1444.17万元,用季节指数预测各个季度的销售额。一季度预测值=1444.17÷4×102.51%≈370.10(万元)二季度预测值=1444.17÷4×114.05%≈411.77(万元)三季度预测值=1444.17÷4×72.16%≈260.53(万元)四季度预测值=1444.17÷4×111.28%≈401.77(万元)第40页,课件共46页,创作于2023年2月2、已知某季实际值,求全年预测值和未来各季预测值同样的案例,该女装部2005年第一季度销售额为370万,预测第二、三、四季度销售额和2005年全年预测值。二季度预测值=370÷102.51%×114.05%≈411.65三季度预测值=370÷102.51%×72.16%≈260.45四季度预测值=370÷102.51%×111.28%≈4
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度智慧社区车位共享管理服务合同范本3篇
- 2024跨境教育服务合作合同
- 2025年度住宅小区车位租赁押金退还及违约责任合同4篇
- 2025年度校园窗帘设计与施工一体化服务合同3篇
- 2025年度物流金融承运商合作协议范本8篇
- 2025年度特种物品储藏安全管理合同4篇
- 2025年度工业遗产保护与拆迁补偿协议3篇
- 2025年度智慧农业监测系统采购合同4篇
- 2024版门面精装修产权转让协议
- 2025年员工辞退后债权债务处理协议3篇
- 2024版个人私有房屋购买合同
- 2025年山东光明电力服务公司招聘笔试参考题库含答案解析
- 2024爆炸物运输安全保障协议版B版
- 《神经发展障碍 儿童社交沟通障碍康复规范》
- 2025年中建六局二级子企业总经理岗位公开招聘高频重点提升(共500题)附带答案详解
- 2024年5月江苏省事业单位招聘考试【综合知识与能力素质】真题及答案解析(管理类和其他类)
- 注浆工安全技术措施
- 《食品与食品》课件
- 2024年世界职业院校技能大赛“食品安全与质量检测组”参考试题库(含答案)
- 读书分享会《白夜行》
- 2023上海高考英语词汇手册单词背诵默写表格(复习必背)
评论
0/150
提交评论