版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高三周练理科数学试卷(一)(导数&定积分)姓名1.(2022·海南高考·理科T3)曲线在点处的切线方程为()(A)(B)(C)(D)2.(2022·山东高考文科·T8)已知某生产厂家的年利润(单位:万元)与年产量(单位:万件)的函数关系式为,则使该生产厂家获得最大年利润的年产量为()(A)13万件(B)11万件(C)9万件(D)7万件3.(2022·山东高考理科·T7)由曲线y=,y=围成的封闭图形面积为()(A) (B) (C) (D)4.(2022·辽宁高考理科·T10)已知点P在曲线y=上,为曲线在点P处的切线的倾斜角,则的取值范围是()(A)[0,)(B)(D)5.(2022·湖南高考理科·T4)等于()A、B、C、D、6.(2022·江苏高考·T8)函数y=x2(x>0)的图像在点(ak,ak2)处的切线与x轴的交点的横坐标为ak+1,,若a1=16,则a1+a3+a5的值是________7.(2022·江苏高考·T14)将边长为1m正三角形薄片沿一条平行于某边的直线剪成两块,其中一块是梯形,记,则S的最小值是________。8.(2022·陕西高考理科·T13)从如图所示的长方形区域内任取一个点M(x,y),则点M取自阴影部分的概率为;9.(2022·海南高考·理科T13)设y=f(x)为区间[0,1]上的连续函数,且恒有0≤f(x)≤1,可以用随机模拟方法近似计算积分,先产生两组(每组N个)区间[0,1]上的均匀随机数,…,和,…,,由此得到N个点(i=1,2,…,N),在数出其中满足≤((i=1,2,…,N))的点数,那么由随机模拟方法可得积分的近似值为.10.(2022·北京高考理科·T18)已知函数()=In(1+)-+,(≥0)。(Ⅰ)当=2时,求曲线=()在点(1,(1))处的切线方程;(Ⅱ)求()的单调区间。高三周练理科数学参考答案(一)1、选A.因为,所以,在点处的切线斜率,所以,切线方程为,即,故选A.2、选C,,令得或(舍去),当时;当时,故当时函数有极大值,也是最大值,故选C.3、选A,由题意得:曲线y=,y=的交点坐标为(0,0),(1,1),故所求封闭图形的面积为,故选A.4、选D.5、选D.=(lnx+c)|42=(ln4+c)-(ln2+c)=ln2.【方法技巧】关键是记住被积函数的原函数.6、21.由y=x2(x>0)得,,所以函数y=x2(x>0)在点(ak,ak2)处的切线方程为:当时,解得,所以.7、。设剪成的小正三角形的边长为,则:方法一:利用导数的方法求最小值。,,当时,递减;当时,递增;故当时,S的最小值是。方法二:利用函数的方法求最小值令,则:故当时,S的最小值是。8、。阴影部分的面积为所以点M取自阴影部分的概率为9、。由题意可知,所有取值构成的区域是一个边长为1的正方形,而满足≤的点落在y=f(x)、以及、围成的区域内,由几何概型的计算公式可知的近似值为.10、(I)当时,,由于,,所以曲线在点处的切线方程为即(II),.当时,.所以,在区间上,;在区间上,.故的单调递增区间是,单调递减区间是.当时,由,得,所以,在区
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 陶瓷制品订购协议三篇
- 智能物流系统投资合同三篇
- 信阳师范大学《热力学与统计物理》2022-2023学年第一学期期末试卷
- 信阳师范大学《变态心理学》2022-2023学年第一学期期末试卷
- 小班节日文化的教育传承计划
- 手术室主管工作计划
- 汽车燃料运输合同三篇
- 新余学院《编舞技法》2022-2023学年第一学期期末试卷
- 西南林业大学《家具设计基础》2021-2022学年第一学期期末试卷
- 信阳师范大学《Python语言程序设计实验》2022-2023学年第一学期期末试卷
- JBT 14543-2024 无刷稳速直流电动机技术规范(正式版)
- 工业自动化设备安装合同范本
- 2024年共青团团校考试入团考试题库及答案
- 剑桥雅思14Test2雅思写作真题及范文解析
- MOOC 中学化学教学设计与实践-北京师范大学 中国大学慕课答案
- 培训学校安全工作总结(三篇)
- 发生心脏骤停的应急预案
- 咸阳中心医院门诊综合楼装修改造项目施工组织设计
- 全国高考数学新课标Ⅱ卷第11题说题课件
- 人教版九年级英语全一册Unit5大单元教学设计
- 2021版集成电路技术专业群人才培养方案
评论
0/150
提交评论