版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省台州市琴江中学高三数学文下学期摸底试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若函数在上既是奇函数,又是减函数,则的图像是(
)参考答案:A2.对具有线性相关关系的变量x,y,测得一组数据如下x1234y4.5432.5根据表,利用最小二乘法得到它的回归直线方程为()A.y=﹣0.7x+5.20 B.y=﹣0.7x+4.25 C.y=﹣0.7x+6.25 D.y=﹣0.7x+5.25参考答案:D【考点】线性回归方程.【分析】由表可得样本中心为(2.5,3.5),代入检验可得结论.【解答】解:由表可得样本中心为(2.5,3.5),代入检验可得y=﹣0.7x+5.25.故选D.【点评】本题考查线性回归方程,解题的关键是线性回归直线一定过样本中心点,这是求解线性回归方程的步骤之一.3.双曲线的渐近线与抛物线y=2x2+1相切,则该双曲线的离心率等于()A. B. C. D.参考答案:D考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:把双曲线的一条渐近线方程代入抛物线,整理得到一个一元二次方程,由渐近线与抛物线只有一个公共点,由此利用根的判别式能求出结果.解答:解:双曲线的渐近线方程为y=±,把y=代入抛物线抛物线y=2x2+1,得2bx2﹣ax+b=0,∵渐近线与抛物线y=2x2+1相切,∴△=a2﹣8b2=0,∴,∴e====.故选:D.点评:本题考查双曲线的离心的求解,是基础题,解题进认真解题,注意相切的性质的灵活运用.4.已知,则,,的大小关系是
A.
B.
C.
D.参考答案:A5.利用独立性检验来考察两个分类变量X和Y是否有关系时,通过查阅下表来确定断言“X与Y有关系”的可信程度.如果k>5.024,那么就有把握认为“X与Y有关系”的百分比为()0.500.400.250.150.100.050.0250.0100.0050.0010.4550.7081.3232.0722.7063.8415.0246.6357.87910.828A.
B.
C.
D.
参考答案:D6.现将5张连号的电影票分给甲、乙等5个人,每人一张,且甲、乙分得的电影票连号,则共有不同分法的种数为()A.12 B.24 C.36 D.48参考答案:D【考点】排列、组合的实际应用.【分析】根据题意,分3步进行分析:①、将电影票分成4组,其中1组是2张连在一起,②、将连在一起的2张票分给甲乙,③、将剩余的3张票全排列,分给其他三人,求出每一步的情况数目,由分步计数原理计算可得答案.【解答】解:根据题意,分3步进行分析:①、将电影票分成4组,其中1组是2张连在一起,有4种分组方法,②、将连在一起的2张票分给甲乙,考虑其顺序有A22=2种情况,③、将剩余的3张票全排列,分给其他三人,有A33=6种分法,则共有4×2×6=48种不同分法,故选:D.7.下列选项叙述错误的是(
) A.命题“若x≠1,则x2﹣3x+2≠0”的逆否命题是“若x2﹣3x+2=0,则x=1” B.“x>2”是“x2﹣3x+2>0”的充分不必要条件 C.若命题p:?x∈R,x2+x十1≠0,则?p:?x∈R,x2+x+1=0 D.若p∨q为真命题,则p,q均为真命题参考答案:D考点:命题的真假判断与应用.专题:阅读型;简易逻辑.分析:由逆否命题的形式,即可判断A;运用充分必要条件的定义,即可判断B;由命题的否定的形式,即可判断C;运用复合命题的真假和真值表,即可判断D.解答: 解:对于A.命题“若x≠1,则x2﹣3x+2≠0”的逆否命题是“若x2﹣3x+2=0,则x=1”,则A对;对于B.“x>2”可推出“x2﹣3x+2>0”,反之,不一定推出,则B对;对于C.若命题p:?x∈R,x2+x十1≠0,则?p:?x∈R,x2+x+1=0,则C对;对于D.若p∨q为真命题,则p,q中至少有一个为真,则D错.故选D.点评:本题考查简易逻辑的基础知识,考查四种命题的形式和充分必要条件的判断,及命题的否定和复合命题的真假,属于基础题.8.已知集合A={3,a2},B={2,1﹣a,b},且A∩B={1},则A∪B=()A.{0,1,3} B.{1,2,3} C.{1,2,4} D.{0,1,2,3}参考答案:D【考点】并集及其运算.【分析】由A与B交集的元素为1,得到1属于A且属于B,得到a2=1,求出a的值,进而求出b的值,确定出A与B,找出既属于A又属于B的元素,即可确定出两集合的并集.【解答】解:∵A={3,a2},集合B={2,1﹣a,b},且A∩B={1},∴a2=1,解得:a=1或a=﹣1,当a=1时,1﹣a=1﹣1=0,此时b=1,当a=﹣1时,1﹣a=1﹣(﹣1)=2,不合题意,舍去;∴A={3,1},集合B={0,1,2},则A∪B={0,1,2,3}.故选D9.将正方形(如图1所示)截去两个三棱锥,得到图2所示的几何体,则该几何体的左视图为(
)
A.
B.
C.
D.参考答案:B略10.设函数f(x)是定义在R上的奇函数,且f(x)=,则g[f(﹣8)]=()A.﹣1 B.﹣2 C.1 D.2参考答案:A【考点】函数的值.【分析】先求出f(﹣8)=﹣f(8)=﹣log39=﹣2,从而得到g[f(﹣8)]=g(﹣2)=f(﹣2)=﹣f(2),由此能求出结果.【解答】解:∵函数f(x)是定义在R上的奇函数,且f(x)=,∴f(﹣8)=﹣f(8)=﹣log39=﹣2,∴g[f(﹣8)]=g(﹣2)=f(﹣2)=﹣f(2)=﹣log33=﹣1.故选:A.【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.二、填空题:本大题共7小题,每小题4分,共28分11.为了研究某种细菌在特定环境下,随时间变化繁殖情况,得如下实验数据,计算得回归直线方程为=0.85x﹣0.25.由以上信息,得到下表中c的值为
.天数t(天)34567繁殖个数y(千个)2.5344.5c参考答案:6【考点】BK:线性回归方程.【分析】求出横标和纵标的平均数,写出样本中心点,把样本中心点代入线性回归方程,得到关于c的方程,解方程即可.【解答】解:∵=(3+4+5+6+7)=5,=(2.5+3+4+4.5+c)=∴这组数据的样本中心点是(5,)把样本中心点代入回归直线方程=0.85x﹣0.25∴=0.85×5﹣0.25,∴c=6故答案为:6【点评】本题考查线性回归方程,解题的关键是线性回归直线一定过样本中心点,这是求解线性回归方程的步骤之一.12.若幂函数的图像经过点,则
.
参考答案:略13.一个等差数列中,是一个与无关的常数,则此常数的集合为
.参考答案:14.在直角坐标系中,有一定点,若线段的垂直平分线过抛物线的焦点,则该抛物线的准线方程是
.参考答案:线段的斜率,中点坐标为。所以线段的垂直平分线的斜率为,所以OA的垂直平分线的方程是y?,令y=0得到x=.所以该抛物线的准线方程为.15.设变量满足约束条件:,则的最小值
参考答案:-816.若ln(x+1)﹣1≤ax+b对任意x>﹣1的恒成立,则的最小值是.参考答案:1﹣e【考点】函数恒成立问题.【分析】令y=ln(x+1)﹣ax﹣b﹣1,求出导数,分类讨论,进而得到b≥﹣lna+a﹣2,可得≥1﹣﹣,通过导数求出单调区间和极值、最值,进而得到的最小值.【解答】解:令y=ln(x+1)﹣ax﹣b﹣1,则y′=﹣a,若a≤0,则y′>0恒成立,x>﹣1时函数递增,无最值.若a>0,由y′=0得:x=,当﹣1<x<时,y′>0,函数递增;当x>时,y′<0,函数递减.则x=处取得极大值,也为最大值﹣lna+a﹣b﹣2,∴﹣lna+a﹣b﹣2≤0,∴b≥﹣lna+a﹣2,∴≥1﹣﹣,令t=1﹣﹣,∴t′=,∴(0,e﹣1)上,t′<0,(e﹣1,+∞)上,t′>0,∴a=e﹣1,tmin=1﹣e.∴的最小值为1﹣e.故答案为:1﹣e.【点评】本题考查不等式的恒成立问题注意转化为求函数的最值问题,运用导数判断单调性,求极值和最值是解题的关键,属于中档题17.双曲线的渐近线方程为.参考答案:y=±3x略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分12分)设函数,且.(Ⅰ)求a的值及f(x)的定义域;(Ⅱ)求f(x)在区间上的值域.参考答案:(1)a=2;…………2分;(-1,3)…………5分
(2)…………12分略19.(本题12分)数列{an}的前n项和为Sn,且Sn=n(n+1)(n∈N*).(1)求数列{an}的通项公式;(2)若数列{bn}满足:求数列{bn}的通项公式;(3)令(n∈N*),求数列{cn}的前n项和Tn.参考答案:(1)当n=1时,a1=S1=2,当n≥2时,an=Sn-Sn-1=n(n+1)-(n-1)n=2n,知a1=2满足该式∴数列{an}的通项公式为an=2n.故bn=2(3n+1)(n∈N*).(3)cn==n(3n+1)=n·3n+n,∴Tn=c1+c2+c3+…+cn=(1×3+2×32+3×33+…+n×3n)+(1+2+…+n)令Hn=1×3+2×32+3×33+…+n×3n,①则3Hn=1×32+2×33+3×34+…+n×3n+1②①-②得,-2Hn=3+32+33+…+3n-n×3n+1=-n×3n+1∴Hn=。∴数列{cn}的前n项和Tn=+.20.已知函数,.(Ⅰ)求函数的最小正周期和单调递减区间;(Ⅱ)已知中的三个内角所对的边分别为,若锐角满足,且,,求的面积.参考答案:解:(Ⅰ)
………2分的最小正周期为
………3分由得:,,
的单调递减区间是,
………………6分(Ⅱ)∵,∴,∴………………7分∵,∴.由正弦定理得:,即,∴……………………9分由余弦定理得:,即,∴
………11分∴
…………12分
略21.某中学举行一次“环保知识竞赛”,全校学生参加了这次竞赛.为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取正整数,满分为100分)作为样本进行统计,请根据下面尚未完成并有局部污损的样本的频率分布表和频率分布直方图(如图所示)解决下列问题:(Ⅰ)写出a,b,x,y的值.(Ⅱ)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取2名同学到广场参加环保知识的志愿宣传活动,求所抽取的2名同学来自同一组的概率.(Ⅲ)在(Ⅱ)的条件下,设表示所抽取的2名同学中来自第5组的人数,求的分布列及其数学期望.
组别分组频数频率第1组第2组第3组第4组第5组合计
参考答案:()由题意可知,,,.()由题意可知,第组有人,第组有人,共人.从竞赛
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年蔬菜大棚租赁与农业信息化建设合作协议2篇
- 2024-2025学年西和县三上数学期末综合测试模拟试题含解析
- 2025年沥青路面养护车项目立项申请报告模稿
- 2025年日用陶瓷制品项目申请报告模范
- 2025年润滑油添加剂项目申请报告模范
- 高一名著读书心得800字
- 工程工作计划模板五篇
- 幼儿园中秋节演讲10篇
- 个人原因辞职报告(15篇)
- 2021初中教师教学总结汇报模板10篇
- 2024内置直驱动力刀塔
- 窗帘采购投标方案(技术方案)
- TTJSFB 002-2024 绿色融资租赁项目评价指南
- 统编版(2024新版)七年级上册历史期末复习课件
- 2024-2030年串番茄行业市场发展分析及前景趋势与投资研究报告
- 制造业数据架构设计顶层规划方案
- 新《建设工程施工合同司法解释》逐条解读
- 2024-2025学年高中英语学业水平合格性考试模拟测试卷一含解析
- 2024-2025学年广东省东莞市高三思想政治上册期末试卷及答案
- 9-XX人民医院样本外送检测管理制度(试行)
- 场地硬化合同范文
评论
0/150
提交评论