




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第页共页最新高一下学期数学知识点总结(含答案高一下学期数学重要知识点3篇(精选)总结是在一段时间内对学习和工作生活等表现加以总结和概括的一种书面材料,它可以促使我们考虑,我想我们需要写一份总结了吧。什么样的总结才是有效的呢?那么下面我就给大家讲一讲总结怎么写才比拟好,我们一起来看一看吧。高一下学期数学知识点总结(含答案高一下学期数学重要知识点篇一1、按是否共面可分为两类:(1)共面:平行、相交(2)异面:异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交。异面直线断定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。两异面直线所成的角:范围为(0°,90°)esp.空间向量法两异面直线间间隔:公垂线段(有且只有一条)esp.空间向量法2、假设从有无公共点的角度看可分为两类:(1)有且仅有一个公共点——相交直线;(2)没有公共点——平行或异面直线和平面的位置关系:直线和平面只有三种位置关系:在平面内、与平面相交、与平面平行①直线在平面内——有无数个公共点②直线和平面相交——有且只有一个公共点直线与平面所成的角:平面的一条斜线和它在这个平面内的射影所成的锐角。高一下学期数学知识点总结(含答案高一下学期数学重要知识点篇二集合具有某种特定性质的事物的总体。这里的事物可以是人,物品,也可以是数学元素。例如:1、分散的人或事物聚集到一起;使聚集:紧急~。2、数学名词。一组具有某种共同性质的数学元素:有理数的~。3、口号等等。集合在数学概念中有好多概念,如集合论:集合是现代数学的根本概念,专门研究集合的理论叫做集合论。康托(cantor,g.f.p.,1845年19___年,德国数学家先驱,是集合论的,目前集合论的根本思想已经浸透到现代数学的所有领域。集合,在数学上是一个根底概念。什么叫根底概念?根底概念是不能用其他概念加以定义的概念。集合的概念,可通过直观、公理的方法来下定义。集合是把人们的直观的或思维中的某些确定的可以区分的对象集合在一起,使之成为一个整体(或称为单体),这一整体就是集合。组成一集合的那些对象称为这一集合的元素(或简称为元)。集合与集合之间的关系某些指定的对象集在一起就成为一个集合集合符号,含有有限个元素叫有限集,含有无限个元素叫无限集,空集是不含任何元素的集,记做。空集是任何集合的子集,是任何非空集的真子集。任何集合是它本身的子集。子集,真子集都具有传递性。(说明一下:假如集合a的所有元素同时都是集合b的元素,那么a称作是b的子集,写作ab。假设a是b的子集,且a不等于b,那么a称作是b的真子集,一般写作ab。中学教材课本里将符号下加了一个符号,不要混淆,考试时还是要以课本为准。所有男人的集合是所有人的集合的真子集。)高一下学期数学知识点总结(含答案高一下学期数学重要知识点篇三定义域(高中函数定义)设a,b是两个非空的数集,假如按某个确定的对应关系f,使对于集合a中的任意一个数x,在集合b中都有确定的数f(x)和它对应,那么就称f:a--b为集合a到集合b的一个函数,记作y=f(x),x属于集合a。其中,x叫作自变量,x的取值范围a叫作函数的定义域;值域名称定义函数中,应变量的取值范围叫做这个函数的值域函数的值域,在数学中是函数在定义域中应变量所有值的集合常用的求值域的方法(1)化归法;(2)图象法(数形结合);(3)函数单调性法;(4)配方法;(5)换元法;(6)反函数法(逆求法);(7)判别式法;(8)复合函数法;(9)三角代换法;(10)根本不等式法等关于函数值域误区定义域、对应法那么、值域是函数构造的三个根本“元件”。平时数学中,实行“定义域优先”的原那么,无可置疑。然而事物均具有二重性,在强化定义域问题的同时,往往就削弱或谈化了,对值域问题的探究,造成了一手“硬”一手“软”,使学生对函数的掌握时好时坏,事实上,定义域与值域二者的位置是相当的,绝不能厚此薄皮,何况它们二者随时处于互相转化之中(典型的例子是互为反函数定义域与值域的互相转化)。假如函数的值域是无限集的话,那么求函数值域不总是容易的,反靠不等式的运算性质有时并不能奏效,还必须联络函数的奇偶性、单调性、有界性、周期性来考虑函数的取值情况。才能获得正确答案,从这个角度来讲,求值域的问题有时比求定义域问题难,理论证明,假如加强了对值域求法的研究和讨论,有利于对定义域内函的理解,从而深化对函数本质的认识。“范围”与“值域”一样吗?“范围”与“值域”是我们在学习中经常遇到的两个概念,许多同学常常将它们混为一谈,实际上这是两个不同的概念。“值域”是所有函数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度规划八步法:日事清目标管理+使命愿景模型驱动组织架构优化与业务流程升级
- 石材开采的环境友好型开采方法考核试卷
- 纺织品、针织品及原料批发考核试卷
- 全新的什么初三语文作文
- 玻璃纤维增强塑料的热性能研究考核试卷
- 灯具电路与电气安全考核试卷
- 充电设施在艺术馆和博物馆的推广考核试卷
- 下肢深静脉血栓的预防和护理新进展 2
- 四川省2023~2024学年高二数学下学期期末模拟试题二含答案
- 一例主动脉夹层患者护理个案汇报课件
- 《光储充一体化电站技术规范》标准编制说明+征求意见稿
- 【MOOC】中国传统艺术-篆刻、书法、水墨画体验与欣赏-哈尔滨工业大学 中国大学慕课MOOC答案
- 财报分析-伊利
- 菜鸟驿站转让合同协议书范本
- 多物理场模拟仿真
- 常见职业病危害和预防基础知识
- 山东省2024年夏季普通高中学业水平合格考试地理试题02(解析版)
- 英语四级模拟试题(附答案)
- 人教版八年级下册-中考生物必背知识复习提纲
- 预包装食品标签审核表
- 《高等教育学》历年考试真题试题库(含答案)
评论
0/150
提交评论