版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省荆州市石首新厂高级中学2022年高一数学文联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知、是夹角为的两个单位向量,则与的夹角的正弦值是(
)A.
B.
C.
D.参考答案:A试题分析:,,,,又,所以,故选择A.考点:平面向量的运算及夹角.2.若A、B、C是平面内以O点为圆心,半径为1的圆上不同三个点,且,又存在实数,使,则实数的x
关系为(
)参考答案:A3.定义在R上的偶函数满足,且在[-1,0]上单调递增,设,,,则大小关系是(
)A.
B.
C.
D.参考答案:D4.在空间中,下列命题正确的是()A.平行于同一平面的两条直线平行B.平行于同一直线的两个平面平行C.垂直于同一直线的两条直线平行D.垂直于同一平面的两条直线平行参考答案:D【考点】平面的基本性质及推论.【分析】对4个命题分别进行判断,即可得出结论.【解答】解:对于A,平行于同一平面的两条直线平行、相交或异面,不正确;对于B,平行于同一直线的两个平面平行或相交,不正确;对于C,垂直于同一直线的两条直线平行、相交或异面,不正确;对于D,垂直于同一平面的两条直线平行,正确.故选D.5.直线的倾斜角和斜率分别是(
)A.
B.
C.,不存在
D.,不存在参考答案:C略1.若集合,,则集合等于
(
)
A.
B.
C.
D.
参考答案:B7.已知,点在直线上,且,则点的坐标为(
)A
(
B
(8,-15)
C
()或
D()或(6,-9)参考答案:C8.已知,,且⊥,则等于(
)A、
B、
C、
D、参考答案:A略9.在中,,则的解的个数是(
)A.2个
B.1个
C.0个
D不确定的参考答案:A略10.若在上是奇函数,且则下列各式中一定成立的是(
).A.
B.
C.
D.参考答案:A略二、填空题:本大题共7小题,每小题4分,共28分11.若直线与圆相交,则点P(a,b)与圆的位置关系是
▲
参考答案:
点在圆外;12.已知矩形ABCD(AB>AD)的周长为12,若将它关于对角线AC折起后,使边AB与CD交于点P(如图所示),则△ADP面积的最大值为
.参考答案:27﹣18【考点】基本不等式.【分析】设AB=x,则AD=6﹣x,利用勾股定理得到PD,再根据三角形的面积公式和基本不等式的性质,即可求出.【解答】解∵设AB=x,则AD=6﹣x,又DP=PB′,AP=AB′﹣PB′=AB﹣DP,即AP=x﹣DP,∴(6﹣x)2+PD2=(x﹣PD)2,得PD=6﹣,∵AB>AD,∴3<x<6,∴△ADP的面积S=AD?DP=(6﹣x)(6﹣)=27﹣3(x+)≤27﹣3×2=27﹣18,当且仅当x=3时取等号,∴△ADP面积的最大值为27﹣18,故答案为:27﹣1813.,则A=(用反三角形式表示).参考答案:或
14.若则的值为________.参考答案:略15.若则函数的值域为________.参考答案:略16.某商人将进货单位为8元的商品按每件10元售出时,每天可销售100件,现在它采用提高销售价,减少进货量的办法增加利润.已知这种商品涨1元,其销售数就减少10个.问他将售出价定为________元时,利润获得最大。
参考答案:1417.已知则_________参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数.(Ⅰ)求函数的定义域;(Ⅱ)判断函数的奇偶性,并说明理由;(Ⅲ)求使的的取值范围.参考答案:解(Ⅰ),函数的定义域为.(Ⅱ)函数的定义域关于原点对称
且,为奇函数.(Ⅲ)
当时,
当时,.略19.已知。(1)求f(x)的解析式,并写出定义域;(2)判断f(x)的奇偶性并证明;(3)当a>1时,求使f(x)成立的x的集合。参考答案:略20.某工厂生产一种机器的固定成本为5000元,且每生产100部,需要加大投入2500元。对销售市场进行调查后得知,市场对此产品的需求量为每年500部,已知销售收入函数为,其中是产品售出的数量0≤≤500.
(1)若为年产量,表示利润,求的解析式(2)当年产量为何值时,工厂的年利润最大?其最大值是多少?参考答案:(1);(2)当年产量为475部时,工厂的年利润最大,其最大值为:(元)略21.已知M={x|1<x<3},N={x|x2﹣6x+8≤0}.(1)设全集U=R,定义集合运算△,使M△N=M∩(?UN),求M△N和N△M;(2)若H={x||x﹣a|≤2},按(1)的运算定义求:(N△M)△H.参考答案:【考点】交、并、补集的混合运算.【分析】(1)解不等式求出M,N,结合题意计算即可;(2)解不等式求出集合H,结合(1)中N△M,分类讨论,可得(N△M)△H.【解答】解:(1)M={x|1<x<3},N={x|x2﹣6x+8≤0}={x|2≤x≤4};根据题意,U=R,?UN={x|x<2或x>4},∴M△N=M∩(?UN)={x|1<x<2},又?UM={x|x≤1或x≥3},∴N△M=N∩(?UM)={x|3≤x≤4};(2)∵H={x||x﹣a|≤2}=[a﹣2,a+2],∴(N△M)△H=(N△M)∩(CUH)=(1,2)∩[(﹣∞,a﹣2)∪(a+2,+∞)],当a﹣2≥2,或a+2≤1,即a≥4,或a≤﹣1时,(N△M)△H=(1,2);当1<a﹣
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 吉林师范大学《体育市场营销》2021-2022学年第一学期期末试卷
- 吉林师范大学《日本商务礼仪训练》2021-2022学年第一学期期末试卷
- 吉林师范大学《教师教学能力提高课Ⅱ》2021-2022学年第一学期期末试卷
- 吉林师范大学《概率与统计》2021-2022学年第一学期期末试卷
- 中学班主任交流合作活动方案
- 公共设施消防水池维护方案
- 2024解除劳动合同的赔偿问题
- 吉林大学《微积分CⅠ》2021-2022学年第一学期期末试卷
- 高等院校人才培养管理制度
- 科技企业员工培训与发展总结
- 第一讲 伟大事业都始于梦想(课件)
- 管道补偿器安装检验记录
- 学校食堂出入库管理制度
- 限制被执行人驾驶令申请书
- 铝合金船的建造课件
- 边坡土石方开挖施工方案
- 八年级上册语文课后习题及答案汇编(部分不全)
- 玻璃厂应急预案
- 安全帽生产与使用管理规范
- 货车进入车间安全要求
- 新版深度学习完整整套教学课件
评论
0/150
提交评论