




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省亳州市大塘中学高三数学文上学期摸底试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.观察下列事实|x|+|y|=1的不同整数解(x,y)的个数为4,|x|+|y|=2的不同整数解(x,y)的个数为8,|x|+|y|=3的不同整数解(x,y)的个数为12….则|x|+|y|=20的不同整数解(x,y)的个数为
(
)
A.76
B.80
C.86
D.92参考答案:B2.已知,则=(
)A.
B.
C.
D.参考答案:C略3.设集合等(
)A. B. C.
D.参考答案:D略4.已知是偶函数,,当时,为增函数,若,且,则(
)
A.
B.
C.
D.参考答案:B5.要得到函数的图象,可以把函数的图象(
)A.
向左平移个单位
B.向右平移个单位C.
向左平移个单位
D.向右平移个单位参考答案:A略6.在平面直角坐标系中,,将向量按逆时针旋转后,得向量
则点的坐标是(
)
A.
B.
C.
D.
参考答案:C7.已知抛物线的动弦的中点的横坐标为,则的最大值为(
)A.
B.
C.
D.参考答案:B【知识点】抛物线【试题解析】因为当AB过焦点时,有最大值为
故答案为:B8.△ABC中,角A,B,C所对的边长分别为a,b,c,=,=(sinB,cosA),⊥,b=2,,则△ABC的面积为()A. B. C. D.参考答案:C【考点】数量积判断两个平面向量的垂直关系.【专题】计算题;转化思想;综合法;解三角形;平面向量及应用.【分析】由⊥,得sinB=﹣,由正弦定理得得sinA=﹣,再由同角三角函数关系式得到cosA=﹣,sinA=,从而sinB=,cosB=,从而求出sinC,由此利用△ABC的面积S=,能求出结果.【解答】解:∵△ABC中,角A,B,C所对的边长分别为a,b,c,=,=(sinB,cosA),⊥,b=2,,∴===0,∴sinB=﹣,由正弦定理得,整理,得sinA=﹣,∴sin2A+cos2A=4cos2A=1,∵0<A<π,∴cosA=﹣,sinA=,A=,∴sinB=,cosB==,∴sinC=sin[π﹣(A+B)]=sin(A+B)=sinAcosB+cosAsinB==,∴△ABC的面积S===.故选:C.【点评】本题考查三角形面积的求法,是中档题,解题时要认真审题,注意向量垂直、正弦定理、同角三角函数关系式等知识点的合理运用.9.(2009福建卷理)等差数列的前n项和为,且
=6,=4,则公差d等于A.1
B
C.-2
D3参考答案:C解析∵且.故选C10.函数的图象如图所示,则满足的关系是(
)A.
B.C.
D.参考答案:A略二、填空题:本大题共7小题,每小题4分,共28分11.若双曲线的一个焦点到一条渐近线的距离等于焦距的,则该双曲线的离心率为
.参考答案:【知识点】双曲线的简单性质.H6
双曲线的焦点坐标为(c,0),(﹣c,0),渐近线方程为,根据双曲线的对称性,任意一个焦点到两条渐近线的距离都相等,求(c,0)到的距离,,又∵焦点到一条渐近线的距离等于焦距的,∴b=×2c,两边平方,得4b2=c2,即4(c2﹣a2)=c2,∴3c2=4a2,,即,。【思路点拨】因为双曲线即关于两条坐标轴对称,又关于原点对称,所以任意一个焦点到两条渐近线的距离都相等,所以不妨利用点到直线的距离公式求(c,0)到的距离,再令该距离等于焦距的,就可得到含b,c的齐次式,再把b用a,c表示,利用即可求出离心率.12.已知函数(>0,)的图象如右图所示,则=
.
参考答案:【知识点】三角函数的图像和性质
C3由图像可得,,所以,,因为,所以,故答案为.【思路点拨】根据图像可得函数的正确为,根据周期公式可得,因为在处取得最小值,所以,可求得结果.13.如图,的等腰直角三角形与正三角形所在平面互相垂直,是线段的中点,则与所成角的大小为
参考答案:14.(不等式)若、为正整数,且满足,则的最小值为_________;参考答案:36,当且仅当时等号成立。15.11.二项式的展开式中,含的项的系数是____________.(用数字作答)参考答案:1016.如图,在三棱锥中,已知,,设,则的最小值为
.参考答案:试题分析:设,,,∵,∴,又∵,∴,∴,∴,当且仅当时,等号成立,即的最小值是.考点:1.空间向量的数量积;2.不等式求最值.【思路点睛】向量的综合题常与角度与长度结合在一起考查,在解题时运用向量的运算,数量积的几何意义,同时,需注意挖掘题目中尤其是几何图形中的隐含条件,将问题简化,一般会与函数,不等式等几个知识点交汇,或利用向量的数量积解决其他数学问题是今后考试命题的趋势.本题中,向量和立体几何结合在一起,突破口在于利用.17.直线3x-4y+5=0经过变换后,坐标没变化的点为
;参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知椭圆C:+=1(a>b>0)的左右焦点和短轴的两个端点构成边长为2的正方形.(1)求椭圆C的方程;(2)过点Q(1,0)的直线l与椭圆C相较于A,B两点,且点P(4,3),记直线PA,PB的斜率分别为k1,k2,当k1?k2取最大值时,求直线l的方程.参考答案:考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:(1)由题意可得:b=c=,a=2,即可得出椭圆C的标准方程为=1.(2)当直线l的斜率为0时,利用向量计算公式可得k1k2=;当直线l的斜率不为0时,设直线l的方程为x=my+1,A(x1,y1),B(x2,y2),与椭圆方程联立可得(m2+2)y2+2my﹣3=0,利用斜率计算公式与根与系数的关系可得k1?k2==,令t=4m+1,只考虑t>0时,再利用基本不等式的性质即可得出.解答: 解:(1)由题意可得:b=c=,a=2,∴椭圆C的标准方程为=1.(2)当直线l的斜率为0时,k1k2==;当直线l的斜率不为0时,设直线l的方程为x=my+1,A(x1,y1),B(x2,y2),联立,化为(m2+2)y2+2my﹣3=0,,y1y2=,又x1=my1+1,x2=my2+1,∴k1?k2=====,令t=4m+1,只考虑t>0时,∴k1?k2=+=≤1,当且仅当t=5时取等号.综上可得:直线l的方程为:x﹣y﹣1=0.点评:本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题转化为方程联立可得根与系数的关系、直线斜率计算公式、基本不等式的性质,考查了换元法,考查了推理能力与计算能力,属于中档题.19.(本小题满分14分)已知函数满足如下条件:当时,,且对任意,都有.(1)求函数的图象在点处的切线方程;(2)求当,时,函数的解析式;(3)是否存在,,使得等式成立?若存在就求出(),若不存在,说明理由.参考答案:(1)时,,,
…………2分所以,函数的图象在点处的切线方程为,即.…3分(2)因为,所以,当,时,,
…………4分…6分(3)考虑函数,,,则,当时,,单调递减;当时,;当时,,单调递增;所以,当,时,,当且仅当时,.
……………10分所以,而,令,则,两式相减得,.所以,,故.
……………12分所以,.当且仅当时,.所以,存在唯一一组实数,,使得等式成立.
………………14分
略20.已知数列{an}中,a1=5,a2=2,且2(an+an+2)=5an+1.求证:(1)数列{an+1﹣2an}和{an+1﹣an}都是等比数列;(2)求数列{2n﹣3an}的前n项和Sn.参考答案:【考点】数列的求和;等比关系的确定.【专题】等差数列与等比数列.【分析】(1)2(an+an+2)=5an+1.求可得2(an+2﹣2an+1)=an+1﹣2an,an+2﹣an+1=2(an+1﹣an),根据等比数列的定义判定出数列都是等比数列;(2)由(1)解的an,再求出2n﹣3an=(2﹣22n﹣5),再求出前n项和.【解答】解:(1)∵2(an+an+2)=5an+1,∴2an+2an+2=5an+1,∴2(an+2﹣2an+1)=an+1﹣2an,∴=,∴a2﹣2a1=2﹣2×5=﹣8,∴{an+1﹣2an}是以﹣8为首项,为公比的等比数列;∴an+1﹣2an=﹣8×①∵2(an+an+2)=5an+1,∴an+2﹣an+1=2(an+1﹣an)∴=2,∴a2﹣a1=2﹣×5=﹣,∴{an+1﹣an}是以﹣为首项,2为公比的等比数列;∴an+1﹣an=②,(2)由(1)知an+1﹣2an=﹣8×①an+1﹣an=②,由①②解得an=(24﹣n﹣2n﹣2),验证a1=5,a2=2适合上式,∴2n﹣3an═(24﹣n﹣2n﹣2)?2n﹣3=(2﹣22n﹣5)∴Sn=(2﹣2﹣3)+(2﹣2﹣1)+(2﹣2)+…+((2﹣22n﹣5)=[2n﹣(2﹣3+2﹣1+2+…+22n﹣5)]=[2n﹣]=【点评】本题主要考查了等比关系的确定,等比数列的求和问题.解题的关键是对等比数列基础知识点的熟练掌握,属于中档题21.某高中社团进行社会实践,对[25,55]岁的人群随机抽取n人进行了一次是否开通“微博”的调查,若开通“微博”的称为“时尚族”,否则称为“非时尚族”,通过调查分别得到如图所示统计表和各年龄段人数频率分布直方图:
完成以下问题:
(I)补全频率分布直方图并求n、a、p的值:
(II)从[40.50)岁年龄段的“时尚族”中采用分层抽样法抽取18人参加网络时尚达人大赛,其中选取3人作为领队,记选取的3名领队中年龄在[40,45)岁的人数为X,求X的分布列和期望EX.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年开学第一课安全主题班会教案范例
- 2025年玻璃花盆架项目可行性研究报告
- 2025年猴头菇多糖项目可行性研究报告
- 2025年牛皮纸绳机项目可行性研究报告
- 石家庄财经职业学院《时尚健美操》2023-2024学年第二学期期末试卷
- 浙江省淮北市2025年三年级数学第二学期期末学业水平测试试题含解析
- 上海市青浦区达标名校2025年初三5月份考试物理试题含解析
- 三亚城市职业学院《医学实验基本技术与设备》2023-2024学年第二学期期末试卷
- 山东交通学院《大数据基础实践》2023-2024学年第二学期期末试卷
- 四川省遂宁市重点中学2024-2025学年初三毕业班联考生物试题试卷含解析
- 老年衰弱护理课件
- 中建工期施工进度计划管理专项培训
- 以舞育人:舞蹈教学的德育功能及其实现
- 植物标本的采集和制作
- 愚公移山英文 -中国故事英文版课件
- 酒店住宿水单模板1
- 保利幕墙工程技术标述标课件
- 体育50米快速跑教案9篇
- 大跨结构的经典之作-鸟巢论文
- 订单延期交货的相关处理规定
- 有机溶剂作业场所个人职业病防护用品使用规范
评论
0/150
提交评论