版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省连云港市张湾职业中学高一数学文下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.定义在R上的函数满足:的图像关于轴对称,并且对任意的有,则当时,有(
)A.
B.
C.
D.参考答案:A略2.已知集合A={x|x>0},B={x|﹣1≤x≤2},则A∪B=()A.{x|x≥﹣1} B.{x|x≤2} C.{x|0<x≤2} D.{x|﹣1≤x≤2}参考答案: A【考点】并集及其运算.【分析】根据并集的求法,做出数轴,求解即可.【解答】解:根据题意,作图可得,则A∪B={x|x≥﹣1},故选A.3.若,则下列不等关系中,不能成立的是A. B.C. D.参考答案:C【分析】逐一判断每一个选项的真假.【详解】对于选项A,,所以A成立.对于选项B,因为是R上的增函数,所以,所以选项B成立.对于选项C,因为,所以,由在上单调递减可知:,因此C不成立.对于选项D,因为函数在x<0时,是减函数,所以,所以D成立.故选C.【点睛】(1)本题主要考查函数的单调性,考查实数大小的比较,意在考查学生对这些知识的掌握水平和分析推理能力.(2)比较大小常用作差法,常用函数的单调性比较.4.在正项等比数列{an}中,a1和a19为方程x2﹣10x+16=0的两根,则a8?a10?a12等于()A.16 B.32 C.64 D.256参考答案:C【考点】等比数列的性质.【分析】由a1和a19为方程x2﹣10x+16=0的两根,根据韦达定理即可求出a1和a19的积,而根据等比数列的性质得到a1和a19的积等于a102,由数列为正项数列得到a10的值,然后把所求的式子也利用等比数列的性质化简为关于a10的式子,把a10的值代入即可求出值.【解答】解:因为a1和a19为方程x2﹣10x+16=0的两根,所以a1?a19=a102=16,又此等比数列为正项数列,解得:a10=4,则a8?a10?a12=(a8?a12)?a10=a103=43=64.故选C【点评】此题考查学生灵活运用韦达定理及等比数列的性质化简求值,是一道基础题.5.若函数图象关于对称,则实数的值为A.
B.
C.
D.参考答案:C略6.设直线l与平面平行,直线m在平面上,那么()A.直线l不平行于直线m B.直线l与直线m异面C.直线l与直线m没有公共点 D.直线l与直线m不垂直参考答案:C【分析】由题设条件,得到直线与直线异面或平行,进而得到答案.【详解】由题意,因为直线与平面平行,直线在平面上,所以直线与直线异面或平行,即直线与直线没有公共点,故选C.【点睛】本题主要考查了空间中直线与直线只见那的位置关系的判定及应用,以及直线与平面平行的应用,着重考查了推理与论证能力,属于基础题.7.若,则下列结论一定成立的是
A.
B.
C.
D.参考答案:C8.将函数的图象向左平移m(m>0)个单位长度后,所得到的图象关于y轴对称,则m的最小值是()A. B. C. D.参考答案:B【考点】两角和与差的正弦函数;函数y=Asin(ωx+φ)的图象变换.【专题】三角函数的图像与性质.【分析】函数解析式提取2变形后,利用两角和与差的正弦函数公式化为一个角的正弦函数,利用平移规律得到平移后的解析式,根据所得的图象关于y轴对称,即可求出m的最小值.【解答】解:y=cosx+sinx=2(cosx+sinx)=2sin(x+),∴图象向左平移m(m>0)个单位长度得到y=2sin[(x+m)+]=2sin(x+m+),∵所得的图象关于y轴对称,∴m+=kπ+(k∈Z),则m的最小值为.故选B【点评】此题考查了两角和与差的正弦函数公式,以及函数y=Asin(ωx+φ)的图象变换,熟练掌握公式是解本题的关键.9.设为等比数列的前项和,若,则
A.8
B.9
C.15
D.16参考答案:B10.在△ABC中,内角A,B,C所对的边分别为a,b,c,且,若C为锐角,则的最大值为(
)A.
B.
C.
D.参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11.若角的终边上有一点,且,则
参考答案:
12.函数,给出下列4个命题:①在区间上是减函数;
②直线是函数图像的一条对称轴;③函数f(x)的图像可由函数的图像向左平移而得到;④若,则f(x)的值域是.其中正确命题序号是
。参考答案:①②13.函数y=
的单调递减区间是
参考答案:略14.已知单位向量,的夹角为,那么||=.参考答案:【考点】平面向量数量积的坐标表示、模、夹角.【分析】先将所求向量的模平方,转化为向量数量积运算,再利用已知两向量的模和夹角,利用数量积运算性质计算即可,最后别忘了开平方【解答】解:∵单位向量,的夹角为,∴||2=﹣4+4=1﹣4×1×1×cos+4=1﹣2+4=3∴||=故答案为15.书架上有两套同样的书,每套书分上下两册,在这两套书中随机抽取出两本,恰好是一套书的概率是
。参考答案:16.的最小正周期为
.参考答案:略17.函数的反函数
参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本题满分10分)设函数的定义域为集合,函数的定义域为集合.求:(1)集合;(2)集合.参考答案:(1)
(2)
19.已知函数.任取t∈R,若函数f(x)在区间上的最大值为M(t),最小值为m(t),记g(t)=M(t)﹣m(t).(1)求函数f(x)的最小正周期及对称轴方程;(2)当t∈时,求函数g(t)的解析式;(3)设函数h(x)=2|x﹣k|,H(x)=x|x﹣k|+2k﹣8,其中实数k为参数,且满足关于t的不等式有解,若对任意x1∈,使得h(x2)=H(x1)成立,求实数k的取值范围.参考答案:【考点】H2:正弦函数的图象.【分析】(1)根据正弦型函数f(x)的解析式求出它的最小正周期和对称轴方程;(2)分类讨论、和t∈时,求出对应函数g(t)的解析式;(3)根据f(x)的最小正周期T,得出g(t)是周期函数,研究函数g(t)在一个周期内的性质,求出g(t)的解析式;画出g(t)的部分图象,求出值域,利用不等式求出k的取值范围,再把“对任意x1∈,使得h(x2)=H(x1)成立”转化为“H(x)在的值域的子集“,从而求出k的取值范围.【解答】解:(1)函数,则f(x)的最小正周期为;令,解得f(x)的对称轴方程为x=2k+1(x∈Z);(2)①当时,在区间上,,m(t)=f(﹣1)=﹣1,∴;②当时,在区间上,,m(t)=f(﹣1)=﹣1,∴;③当t∈时,在区间上,,,∴;∴当t∈时,函数;(3)∵的最小正周期T=4,∴M(t+4)=M(t),m(t+4)=m(t),∴g(t+4)=M(t+4)﹣m(t+4)=M(t)﹣m(t)=g(t);∴g(t)是周期为4的函数,研究函数g(t)的性质,只须研究函数g(t)在t∈时的性质即可;仿照(2),可得;画出函数g(t)的部分图象,如图所示,∴函数g(t)的值域为;已知有解,即k≤4g(t)max=4,∴k≤4;若对任意x1∈,使得h(x2)=H(x1)成立,即H(x)在的值域的子集.∵,当k≤4时,∵h(x)在(﹣∞,k)上单调递减,在上单调递增,∴h(x)min=h(k)=1,∵H(x)=x|x﹣k|+2k﹣8在[4,+∞)上单调递增,∴H(x)min=H(4)=8﹣2k,∴8﹣2k≥1,即;综上,实数的取值范围是.20.(本题满分12分)已知函数.
(1)设的定义域为A,求集合A;(2)判断函数在(1,+)上单调性,并用定义加以证明.参考答案:解:(1)由,得,
所以,函数的定义域为………4分
(2)函数在上单调递减.
………………2分
证明:任取,设,………1分
则
……2分
又,所以
故………2分
因此,函数在上单调递减.
………1分21.已知,求下列各式的值.(1);(2).参考答案:(1);(2).【分析】(1)由,代入求解即可(2)原式分母化为,进而分子分母同时除以化简为关于的代数式,代入求解即可.【详解】解:(1);(2).【点睛】本题考查了齐次式的运用,将分母1化为是解题的关键.22.(12分)已知函数,且f(1)=2.(1)求m;(2)判断f(x)的奇偶性;(3)函数f(x)在(1,+∞)上是增函数还是减函数?并证明.参考答案:(1)f(1):1+m=2,m=1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 个人担保保证书
- 房屋买卖合同纠纷案例解读
- 电子元器件采购合同样本
- 塑料袋配送购销合同
- 创业联盟协议书
- 设备租赁合同范本范本格式
- 酒店食堂服务招标公告
- 事业单位采购合同中的支付方式
- 销售合同调整协议的修改要点
- 购销合同有效期内的合同履行条件
- 美容门诊感染管理制度
- 2023年电商高级经理年度总结及下一年计划
- 模具开发FMEA失效模式分析
- 年产40万吨灰底涂布白板纸造纸车间备料及涂布工段初步设计
- 1-3-二氯丙烯安全技术说明书MSDS
- 学生思想政治工作工作证明材料
- 一方出资一方出力合作协议
- 污水处理药剂采购投标方案(技术方案)
- 环保设施安全风险评估报告
- 数字逻辑与计算机组成 习题答案 袁春风 第3章作业批改总结
- 要求降低物业费的申请书范本
评论
0/150
提交评论