下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3
Dataavailability
FigureES.1
PercentageofSDGenvironment-relatedindicatorswithsufficientdataforanalysisofprogress
ExecutiveSummary
100
80
59%
60
42%
40
34%
20
0
2018
2020
2022
ThismajorimprovementindataavailabilityresultsfromasustainedinvestmentbycountriesintheirnationalstatisticalsystemstocollectandreportdataforSDGindicatorsaspartoftheirsustainabledevelopmentprogrammes,supportedbycapacitydevelopmenteffortsbycustodianagencies.
Thefurtherdevelopmentofmethodologiesthatusenewdatasourcesalsocontributestoimproveddataavailability.Manynationalstatisticaloffices(NSOs)arealreadyexperimentingwithusingbigdataintheproductionofofficialstatistics.Currently,thedominantbigdatatypesincludeEarthObservation(EO)data,citizensciencedataandothersensornetworkdata,combinedwithadvancedanalyticaltechniques(e.g.machinelearning,geospatialmodellingandgeostatisticalmodelling).
TheUnitedNationsEnvironmentProgramme’s(UNEP)Measuring
Progressseriesofreportsprovidesanoverviewoftheprogress
madeindataavailabilityforthe92environment-relatedSustainable
DevelopmentGoal(SDG)indicators,coupledwithimprovement
ordegradationinthetrendofeachindicator.Italsoexplores
thepotentialandlimitationsofusingstatisticalanalysisto
demonstrateinterlinkagesbetweenindicatorpairstobetterinform
policymakersofthesynergiesandtrade-offsbetweenSDGs.
Theindicatorsaredividedintofourcategories:(i)stateofthe
environment,(ii)driversofchange,(iii)stateofhumanwell-being
and(iv)socioeconomicandenvironmentalfactors.Thisreport
explorestheuseofmultivariatestatisticalanalysisusingwater-
relatedecosystems(freshwaterandmarine)asanexampleofthe
utilityofthisapproachtoexplorehowecosystemsareimpactedby
drivers,pressuresandactionsatmultiplescales.
Substantialimprovementinglobaldataavailability
Globalanalysisoftheprogressofthe92environment-related
SDGindicatorsdemonstratesanimprovementindataavailability,
resultingfromadditionaldatabeingreportedbycountriesleading
totheavailabilityofsufficientdatatoaggregateatregionaland
globallevels.In2022,theenvironment-relatedSDGindicatorswith
sufficientdatatoanalysewereestimatedat59percent,upfrom
42percentin2020and34percentin2018.Indicatorswithmore
dataavailablearemostlyfoundinSDG6onfreshwater,SDG7on
energy,SDG12onsustainableconsumptionandproduction,SDG
13onclimatechange,SDG14onlifebelowwaterandSDG15on
lifeonland,withthemostimprovementindataavailabilityreported
intheLatinAmericaandCaribbean,NorthernAfrica,andEurope
regions.
41%
21%
38%
51%
12%
37%
51%
17%
32%
55%
13%
32%
55%
14%
30%
55%
16%
28%
59%
16%
25%
50%
22%
28%
45%
16%
39%
80
60
40
20
Measuringprogress:Water-relatedecosystemsandtheSDGs
FigureES.2Environment-relatedSDGindicatorsdatatrend,
globallevel
Global
38%
41%
21%
Nodataorinsufficientdata
LittlechangeorPositivetrend
anegativetrend
Statusofenvironment-relatedSDGindicators
In2022,atthegloballevel38percentofthe92environment-relatedindicatorsshowedpositivechange,indicatingenvironmentalimprovement,and21percentshowedlittleornegativechange.ThemostindicatorsshowingpositivetrendswerethoserelatedtoSDG9oninfrastructure,SDG7onenergyandSDG6onfreshwater.
TheregionswiththehighestproportionofSDGenvironment-relatedindicatorsshowingenvironmentalimprovementaretheLatinAmericaandtheCaribbeanregion(39percent)andtheCentralandSouthernAsiasubregion(38percent).Theregionswiththelowestproportionofindicatorsshowingenvironmental
4
FigureES.3Environment-relatedSDGindicatorsdatatrend,
globalandregionallevels
54%
21%
25%
0
LatinGlobalCentralSub-WesternNorthernEasternEuropeOceaniaNorthern
America
andthe
andSaharanAsia
SouthernAfrica
Africaand
SEAsia
Caribbean
Asia
America
Positivetrend
Nodataorinsufficientdata
Littlechangeoranegativetrend
degradationareCentralandSouthernAsia(12percent),WesternAsia(13percent)andNorthernAfrica(14percent).
Whilemeasuringtheprogressofthe92environment-relatedSDGindicatorsfocusesonevaluatingtrends,itdoesnotassessthemagnitudeofthetrendsorprogresstowardsmeetingtargetsassociatedwithspecificindicators.
Advancingstatisticalmethodsforidentifying
interlinkages
Thisreportadvancesthestatisticalmethodstobetterassess
andunderstandtheinterlinkagesbetweenpairsofindicators
throughtheuseofmultivariatestatisticalanalysis.This
buildsonthemethodsusedinthepreviousreport,Measuring
Progress:EnvironmentandtheSDGs,whichexploredtheuseof
correlationanalysistoidentifytheinterlinkagesbetweenpairsof
indicators.Basedonthedriver-pressure-state-impact-response(DPSIR)framework,theanalysisidentifieshowonestateoftheenvironmentindicatorisrelatestoindicatorsofamultitudeofdriversofchangeaswellassocioeconomicandenvironmentalfactors.Thestatisticalanalysisfocusesonfreshwater-andmarine-relatedecosystemsandisconductedattheglobal,national(ColombiaandMongolia)andbasin(Poyangbasin,China)levels.
Globalpolicydiscussionsbenefitfromnewanalyticalapproachestounderstandingtheunderlyinginterlinkagesanddriversofindicatortrends.Theanalyticalapproachusedhasthepotentialtocontributetoamorepolicy-relevantintegratedanalysis.Theanalysisconfirmedmanyknowninterlinkagesbetweenfreshwater-andmarine-relatedecosystemsandvariabledrivers.Italsoidentifiedseveralnewinterlinkagesthatcannotbeeasilyexplainedwiththeexistingliterature,requiringfurtherinvestigationtoidentifywhetherthesearecovariatesornewlyidentifieddrivers.Considerationofthesenewdriversmaybehighlyrelevanttothedevelopmentofnewinnovativepoliciestoprotecttheseecosystems.
Evaluatingindicatorsatthenationallevelprovidesamorecomprehensiveandactionableinterpretationofkeyinterlinkages
thanatthegloballevel,butglobal-leveltrendsremaincriticaltoassessingoverallprogressinachievingtheSDGs.Auniqueaspectoftheanalysisistheinclusionofbothglobal-levelandnational-levelinterlinkages.Whilesomeinterlinkagesweredetectedatbothscales,otherswereonlyidentifiedatthemoregranularnationalscale.Thevariouspositiveandnegativerelationshipsidentifiedbetweenthestateoftheecosystem,directdriversofchange,stateofhumanwell-being,andsocioeconomicandenvironmentalfactorshighlighttheimportanceofconsideringtheimpactofindirectlyrelatedfactors.Whilesomeimpactingfactorsarecommoninglobalandnationalsettings,identifyingothernationalfactorsconsideredtohavesynergiesortrade-offswithwater-
relatedecosystemsisimperativetoinformthedevelopmentoftargetedpoliciesandinterventionstoprotecttheseecosystems.
Findingsforfreshwater-andmarine-related
ecosystems
Theanalysisidentifiedstronginterlinkagesrelatedtopoliciesthatintegratelandandwaterconservation,ensuresuitablewaterinfrastructureinurbanareas,providemitigationofpollutionandaddressimpactsfromwaterwithdrawalsassociatedwitheconomicactivity.Theanalysisrevealedmostlyexamplesofrelationshipsconsistentwithpublishedevidenceandintuition.Forexample,populationlivinginurbanareaswasfoundtobepositivelyinterlinkedtoadeclineinmarine-relatedecosystemindicators,confirmingtheimpactofeffluentsfromlargecitiesontheeutrophicationofcoastalareas.
Theinclusionofglobalandnationallevelsinthestatisticalanalysisprovidedanopportunitytoverifyglobalinterlinkages
withnationalcasestudiesandhighlighttheimpactofdatadisaggregation.Forinstance,conservationeffortswereconsistentlypositivelyinterlinkedwithfreshwater-relatedecosystemindicatorsatbothlevels,whilewater-useefficiencyindicatorswereinterlinkedwithfreshwater-relatedecosystemsonlyatthenationallevel.
Recommendations
Theanalyticalapproachhasexposedsomeofthecriticaldatagapsinwater-relatedecosystemsandhaschallengedthesuitabilityofsomeindicatorstodetectmeaningfulchange
inthehealthoffreshwater-andmarine-relatedecosystems.Thefreshwater-relatedecosystemassessmentwaslimitedtointerlinkagesbetweenvariousmetricsoftheareaoffreshwater
5
Measuringprogress:Water-relatedecosystemsandtheSDGs
ineachcountry.Similarly,thelackofdisaggregatedcatchment-leveldataconstrainedtheabilitytomeaningfullyassesscoastalecosystems.Whilethesedatasetsbenefitfromtheabilitytoprovideconsistentmeasurementusingremotesensingacrosstheglobe,theyarelimitedintheirabilitytomeasurethewaterquality,volumesorecosystemhealthofwaterbodies.Theremaybeopportunitiestofurtherutilizecitizenscience,satelliteimagery,low-costinsitumonitoringandbigdatatoproducemeasuresofwaterqualityand/orvolumewithinvariouswaterbodies.
ItiscriticalthatthesuccessesoftheSDGindicatorframeworkbetranslatedintodisaggregateddatacapableofinformingsubnationalpolicieswhilemaintainingcompatibilityataglobalscale.Dataandindicatorsarekeyforinformeddecision-makingandpolicydesigntoknowhowrealisticoptionsare,whatinconsistenciesmightresultfromdecisions,howthecostofsuchinconsistenciescanbemitigatedandhowtrade-offscanbeexplained.Consideringthatmostenvironmentalpolicies,includingwaterpolicies,aredevelopedatthenationalorsubnationalscale,disaggregateddataisneededtoinformpolicy.
Re-evaluatingthesuitabilityofthecurrentindicatormethodologiestoparsetruechangeintheenvironmentfromdataandmethodologicalartefactsisneededtobolsterdatacollectionforotherenvironment-relatedindicators.Moreover,theanalysisrevealedtheimportanceofincorporatingmoreecologically
relevantspatialgroupings.Catchment-basedorecosystem-basedaggregationsmayprovidemoreinsightintotheecologicaldimensionofmanyoftheinterlinkagesidentifiedforfresh
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 八年级历史下册 第二学习主题 社会主义道路的探索 第5课 艰苦创业的民族脊梁教案 川教版
- 2024学年九年级英语上册 Unit 2 Great People Lesson 7 What Is the Meaning of Life教案(新版)冀教版
- 2024年春八年级生物下册 第7单元 第1章 第1节 植物的生殖教案 (新版)新人教版
- 2024年五年级数学下册 五 分数除法第1课时 分数除法(一)教案 北师大版
- 八年级生物上册 第四单元 第一章 第一节花的结构和类型教案 (新版)济南版
- 2024-2025学年高中历史 第三单元 第二次世界大战 探究活动课一 世界大战的启示-战争给人类带来了什么(2)教学教案 新人教版选修3
- 总经理聘用合同(2篇)
- 银行免还款合同(2篇)
- 麻雀人教版课件
- 第13课《唐诗五首·黄鹤楼》八年级语文上册精讲同步课堂(统编版)
- 2024年度智能家居解决方案合同
- 2024-2030年中国汽车再制造行业产销量预测及投资战略研究报告
- 消防安全知识
- 小学信息科技《数据与编码-探索生活中的“编码”》教学设计
- 2024年四川省达州市中考英语试题含解析
- 2024年云网安全应知应会考试题库
- 小学道德与法治《中华民族一家亲》完整版课件部编版
- 《电力建设施工技术规范 第2部分:锅炉机组》DLT 5190.2
- DL-T 5190.1-2022 电力建设施工技术规范 第1部分:土建结构工程(附条文说明)
- 经纬度数转换工具
- 一年级家长进课堂电的知识(课堂PPT)
评论
0/150
提交评论