已阅读5页,还剩9页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3.2.2
双曲线的运用
人教A版(2019)选择性必修第一册学习目标1.掌握双曲线的定义、标准方程及其几何性质。2.运用解析法(坐标法)研究双曲线的标准方程和几何性质,并能利用其解决相关问题。3.核心素养:逻辑推理、数学抽象、数学运算一、复习导入双曲线的概念及其标准方程
双曲线的简单几何性质标准方程11性质范围对称性顶点渐近线离心率
二、新课讲授例1双曲线型冷却塔的外形,是双曲线的一部分绕其虚轴旋转所成的曲面(如图).它的最小半径为12m,上口半径为13m,下口半径为25m,高为55m.试建立适当的坐标系,求出此双曲线的方程(精确到1m).追问1双曲线的一部分绕其虚轴旋转所成的曲面是我们学过的哪种曲面?分析:旋转面一条平面曲线绕它所在平面内的一条定直线旋转所成的曲面叫做旋转面,封闭的旋转面围成的几何体叫做旋转体.这条定直线就做旋转体的轴.追问2“此双曲线”与“双曲线型冷却塔的外形”之间是什么关系?“双曲线型冷却塔的外形”与经过它的轴平面的交线,就是“此双曲线”的一部分.追问3“最小半径”与该双曲线有什么联系?“最小半径”等于该双曲线实轴长的一半.
追问1题中的“常数”与最后求得的曲线有什么关系?
小结:
三、课堂小结1、解决实际问题的一般方法四、作业布置课本
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 带你认识什么是结构化面试
- 化学反应工程试卷
- 2024美容院美容院与养生馆合作经营协议范本3篇
- 2024年度现代农业技术研发人员聘用合同模板3篇
- 2025年度酒店厨师团队承包与客房服务一体化合同3篇
- 2025年度校园食堂食品安全培训及供餐服务协议3篇
- 马鞍山师范高等专科学校《光伏设备概论》2023-2024学年第一学期期末试卷
- 四川工商学院《英语听说Ⅰ》2023-2024学年第一学期期末试卷
- 郑州电子信息职业技术学院《微生物学实验C》2023-2024学年第一学期期末试卷
- 天津财经大学《桥牌与博弈论》2023-2024学年第一学期期末试卷
- 湖北省武汉市江岸区2023-2024学年四上数学期末检测模拟试题含答案
- 2023-2024学年贵阳市花溪区四年级数学第一学期期末检测模拟试题含答案
- 法院解冻协议书
- 《神笔马良》教学课件
- 林业造林工程质量问题及改进措施
- 医院职能科室管理考核标准
- 人工智能概论PPT全套完整教学课件
- 妇科手术合并膀胱造瘘术后护理
- 氧化铝生产工艺教学拜耳法
- 新构造运动与新构造
- 2023年十八项医疗核心制度考试题与答案
评论
0/150
提交评论