浙江省绍兴市上虞区2022-2023学年数学高二下期末经典模拟试题含解析_第1页
浙江省绍兴市上虞区2022-2023学年数学高二下期末经典模拟试题含解析_第2页
浙江省绍兴市上虞区2022-2023学年数学高二下期末经典模拟试题含解析_第3页
浙江省绍兴市上虞区2022-2023学年数学高二下期末经典模拟试题含解析_第4页
浙江省绍兴市上虞区2022-2023学年数学高二下期末经典模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设a=log20.3,b=10lg0.3,c=100.3,则A.a<b<c B.b<c<a C.c<a<b D.c<b<a2.如果,则的解析式为()A. B.C. D.3.若两个正实数满足,且恒成立,则实数的取值范围是()A. B. C. D.4.设集合,,则()A. B. C. D.5.将三枚骰子各掷一次,设事件为“三个点数都不相同”,事件为“至少出现一个6点”,则概率的值为()A. B. C. D.6.已知等式x4+a1x3+A.(1,2,3,4)B.(0,3,4,0)C.(0,-3,4,-1)D.(-1,0,2,-2)7.设为虚数单位,复数为纯虚数,则().A.2 B.-2 C. D.8.由曲线,围成的封闭图形的面积为()A. B. C. D.9.若是互不相同的空间直线,是不重合的平面,则下列命题中真命题是()A.若则B.若则C.若,,则D.若,,则10.若曲线在点处的切线方程为,则()A.-1 B. C. D.111.不等式x-5+A.-5,7 B.-∞,+∞C.-∞,-5∪7,+∞12.在的展开式中,含项的系数为()A.45 B.55 C.120 D.165二、填空题:本题共4小题,每小题5分,共20分。13.如图所示,在棱长为2的正方体中,,分别是,的中点,那么异面直线和所成角的余弦值等于________________.14.函数的单调递增区间是.15.在直角坐标系中,若直线(为参数)过椭圆(为参数)的左顶点,则__________.16.一个竖直平面内的多边形,用斜二测画法得到的水平放置的直观图是一个边长为的正方形,该正方形有一组对边是水平的,则原多边形的面积是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)[选修4-5:不等式选讲]已知函数的最小值为.(1)求的值;(2)若不等式恒成立,求的取值范围.18.(12分)在中,内角的对边分别为,已知,且.(1)求角的大小;(2)若,求的面积.19.(12分)已知函数.(1)解不等式;(2)若正数,满足,求的最小值.20.(12分)已知函数,.(1)若,求函数的图像在点处的切线方程;(2)讨论的单调性.21.(12分)已知命题:函数在上单调递增;命题:关于的方程有解.若为真命题,为假命题,求实数的取值范围.22.(10分)已知二次函数的值域为,且,.(Ⅰ)求的解析式;(Ⅱ)若函数在上是减函数,求实数的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】

求出三个数值的范围,即可比较大小.【详解】,,,,,的大小关系是:.故选:A.【点睛】对数函数值大小的比较一般有三种方法:①单调性法,在同底的情况下直接得到大小关系,若不同底,先化为同底.②中间值过渡法,即寻找中间数联系要比较的两个数,一般是用“0”,“1”或其他特殊值进行“比较传递”.③图象法,根据图象观察得出大小关系.2、C【解析】

根据配凑法,即可求得的解析式,注意定义域的范围即可.【详解】因为,即令,则,即所以选C【点睛】本题考查了配凑法在求函数解析式中的应用,注意定义域的范围,属于基础题.3、D【解析】

将代数式与相乘,展开后利用基本不等式求出的最小值,然后解不等式,可得出实数的取值范围.【详解】由基本不等式得,当且仅当,由于,,即当时,等号成立,所以,的最小值为,由题意可得,即,解得,因此,实数的取值范围是,故选D.【点睛】本题考查不等式恒成立问题,考查利用基本不等式求最值,对于不等式成立的问题,需要结合量词来决定所选择的最值,考查计算能力,属于中等题.4、D【解析】函数有意义,则,函数的值域是,即.本题选择D选项.5、A【解析】考点:条件概率与独立事件.分析:本题要求条件概率,根据要求的结果等于P(AB)÷P(B),需要先求出AB同时发生的概率,除以B发生的概率,根据等可能事件的概率公式做出要用的概率.代入算式得到结果.解:∵P(A|B)=P(AB)÷P(B),P(AB)==P(B)=1-P()=1-=1-=∴P(A/B)=P(AB)÷P(B)==故选A.6、C【解析】试题分析:本题可以采用排除法求解,由题设条件,等式左右两边的同次项的系数一定相等,故可以比较两边的系数来排除一定不对的选项,由于立方项的系数与常数项相对较简单,宜先比较立方项的系数与常数项,由此入手,相对较简.解:比较等式两边x3的系数,得4=4+b1,则b1=1,故排除A,D;再比较等式两边的常数项,有1=1+b1+b2+b3+b4,∴b1+b2+b3+b4=1.故排除B故应选C考点:二项式定理点评:排除法做选择题是一种间接法,适合题目条件较多,或者正面证明、判断较困难的题型.7、D【解析】

整理得:,由复数为纯虚数列方程即可得解.【详解】因为又它是纯虚数,所以,解得:故选D【点睛】本题主要考查了复数的除法运算,还考查了复数的相关概念,考查方程思想,属于基础题.8、C【解析】围成的封闭图形的面积为,选C.9、C【解析】

对于A,考虑空间两直线的位置关系和面面平行的性质定理;对于B,考虑线面垂直的判定定理及面面垂直的性质定理;对于C,考虑面面垂直的判定定理;对于D,考虑空间两条直线的位置关系及平行公理.【详解】选项A中,除平行外,还有异面的位置关系,则A不正确;选项B中,与的位置关系有相交、平行、在内三种,则B不正确;选项C中,由,设经过的平面与相交,交线为,则,又,故,又,所以,则C正确;选项D中,与的位置关系还有相交和异面,则D不正确;故选C.【点睛】该题考查的是有关立体几何问题,涉及到的知识点有空间直线与平面的位置关系,面面平行的性质,线面垂直的判定,面面垂直的判定和性质,属于简单题目.10、B【解析】分析:求出导数,求得切线的斜率,由切线方程可得,即可得到答案.详解:的导数为,曲线在点处的切线方程为,有,解得.故选:B.点睛:本题考查导数的运用,求切线的斜率,注意运用导数的几何意义,正确求导是解题的关键.11、B【解析】

利用绝对值三角不等式,得到x-5+x+3【详解】x-5x-5+x+3故答案选B【点睛】本题考查了解绝对值不等式,利用绝对值三角不等式简化了运算.12、D【解析】分析:由题意可得展开式中含项的系数为,再利用二项式系数的性质化为,从而得到答案.详解:的展开式中含项的系数为故选D.点睛:本题主要考查二项式定理的应用,求展开式中某项的系数,二项式系数的性质,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、.【解析】以AD,DC,DD1建立空间直角坐标系,则:得直线和所成角的余弦值等于14、【解析】试题分析:因为,所以单调递增区间是考点:导数应用15、.【解析】分析:直接化参数方程为普通方程,得到直线和椭圆的普通方程,求出椭圆的左顶点,代入直线的方程,即可求得的值.详解:由已知可得圆(为参数)化为普通方程,可得,故左顶点为,直线(为参数)化为普通方程,可得,又点在直线上,故,解得,故答案是.点睛:该题考查的是有关直线的参数方程与椭圆的参数方程的问题,在解题的过程中,需要将参数方程化为普通方程,所以就需要掌握参数方程向普通方程的转化-----消参,之后要明确椭圆的左顶点的坐标,以及点在直线上的条件,从而求得参数的值.16、【解析】

根据斜二测画法可知,原图形中的高在直观图中变为原来的,直观图中的高变为原高的,原来的平面图形与直观图的面积比是:1,计算即可.【详解】该多边形的直观图是一个边长为的正方形,正方形的面积为,原多边形的面积是.故答案为.【点睛】本题主要考查了斜二测画法,原图形与直观图面积的关系,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】分析:(1)分类讨论的取值情况,去绝对值;根据最小值确定的值.(2)代入的值,由绝对值不等式确定表达式;去绝对值解不等式即可得到最后取值范围.详解:(1),所以最小值为,即.(2)由(1)知,恒成立,由于,等号当且仅当时成立,故,解得或.所以的取值范围为.点睛:本题综合考查了分类讨论解绝对值不等式,根据绝对值不等式成立条件确定参数的范围,属于中档题.18、(1)或;(2).【解析】

由已知及正弦定理可得,结合范围,利用特殊角的三角函数值可求A的值.

由利用同角三角函数基本关系式可得cosA,由余弦定理可求b的值,进而根据三角形面积公式即可计算得解.【详解】(1)因为,所以,所以,即.因为所以,或.(2)因为,所以,所以,解得.所以.【点睛】本题主要考查了正弦定理,特殊角的三角函数值,同角三角函数基本关系式,余弦定理,三角形面积公式在解三角形中的应用,考查了转化思想,属于中档题.19、(1);(2).【解析】

(1)去绝对值,根据分段函数的解析式即可求出不等式的解集;(2)由题意得,再根据基本不等式即可求出.【详解】(1)因为所以①当时,由,解得②当时,由,解得又,所以③当时,不满足,此时不等式无解综上,不等式的解集为(2)由题意得所以=当且仅当时等号成立,所以的最小值为.【点睛】本题考查解绝对值不等式和利用基本不等式的简单证明,注意利用基本不等式证明时要强调等号成立的条件!20、(1);(2)当时,的递增区间是,当时,的递增区间是,递减区间是.【解析】

(1)求出,当时,求出,写出切线的点斜式方程,整理即可;(2)求出的定义域,(或)是否恒成立对分类讨论,若恒成立,得到单调区间,若不恒成立,求解,即可得到结论.【详解】(1),当时,,,函数的图像在点处的切线方程为,即;(2)的定义域为,,当时,在恒成立,的递增区间是,当时,,的递增区间是,递减区间是,综上,当时,的递增区间是,当时,的递增区间是,递减区间是.【点睛】本题考查导数几何意义,利用导数求函数的单调性,考查分类讨论思想,以及计算求解能力,属于中档题.21、.【解析】试题分析:命题p:函数在上单调递增,利用一次函数的单调性可得或;命题q:关于x的方程有实根,可得,解得;若“p或q”为真,“p且q”为假,可得p与q必然一真一假.分类讨论解出即可.试题解析:由已知得,在上单调递增.若为真命题,则,,或;若为真命题,,,.为真命题,为假命题,、一真一假,当真假时,或,即;当假真时,,即.故.点睛:本题考查了一次函数的单调性、一元二次方程由实数根与判别式的关系、复合命题的判定方法,考查了推理能力,属于基础题.22、(Ⅰ)(Ⅱ)【解析】

(Ⅰ)设二次函数的解析式为,根据题意可得关于的方

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论