湖南省株洲市醴陵市第二中学2022-2023学年数学高二下期末学业水平测试模拟试题含解析_第1页
湖南省株洲市醴陵市第二中学2022-2023学年数学高二下期末学业水平测试模拟试题含解析_第2页
湖南省株洲市醴陵市第二中学2022-2023学年数学高二下期末学业水平测试模拟试题含解析_第3页
湖南省株洲市醴陵市第二中学2022-2023学年数学高二下期末学业水平测试模拟试题含解析_第4页
湖南省株洲市醴陵市第二中学2022-2023学年数学高二下期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023高二下数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设函数f(x),g(x)在[A,B]上均可导,且f′(x)<g′(x),则当A<x<B时,有()A.f(x)>g(x)B.f(x)+g(A)<g(x)+f(A)C.f(x)<g(x)D.f(x)+g(B)<g(x)+f(B)2.体育场南侧有4个大门,北侧有3个大门,某学生到该体育场练跑步,则他进出门的方案有()A.12种 B.7种 C.24种 D.49种3.已知函数是(-∞,+∞)上的减函数,则a的取值范围是A.(0,3) B.(0,3] C.(0,2) D.(0,2]4.已知,则()A. B. C. D.5.观察如图中各多边形图案,每个图案均由若干个全等的正六边形组成,记第个图案中正六边形的个数是.由,,,…,可推出()A. B. C. D.6.函数是定义在R上的奇函数,函数的图象与函数的图象关于直线对称,则的值为()A.2B.1C.0D.不能确定7.的展开式中各项系数的和为2,则该展开式中常数项为A.-40 B.-20 C.20 D.408.2019年4月,北京世界园艺博览会开幕,为了保障园艺博览会安全顺利地进行,某部门将5个安保小组全部安排到指定的三个不同区域内值勤,则每个区域至少有一个安保小组的排法有()A.150种 B.240种 C.300种 D.360种9.宋元时期数学名著《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.如图是源于其思想的一个程序框图,若输入的a,b分别为5,2,则输出的()A.5 B.4 C.3 D.910.甲乙两队进行排球比赛,已知在一局比赛中甲队获胜的概率是23A.2027B.49C.811.可表示为()A. B. C. D.12.已知某产品连续4个月的广告费用(千元)与销售额(万元),经过对这些数据的处理,得到如下数据信息:①广告费用和销售额之间具有较强的线性相关关系;②;③回归直线方程中的=0.8(用最小二乘法求得);那么,广告费用为8千元时,可预测销售额约为()A.4.5万元 B.4.9万元 C.6.3万元 D.6.5万元二、填空题:本题共4小题,每小题5分,共20分。13.曲线在(其中为自然对数的底数)处的切线方程为______.14.如图,用6种不同的颜色给图中的4个格子涂色,每个格子涂一种颜色,要求最多使用3种颜色且相邻的两个格子颜色不同,则不同的涂色方法共有种(用数字作答).15.太极图被称为“中华第—图”,从孔庙大成殿梁柱至白外五观的标识物;从道袍、卦摊、中医、气功、武术到南韩国旗、新加坡空军机徽…,太极图无不跃其上,这种广为人知的太极图,其形状如阴阳两鱼互抱在—起,因而被称为“阴阳鱼太极图”.在如图所示的阴阳鱼图案中,阴影部分的区域可用不等式组或来表示,设是阴影中任—点,则的最大值为________.16.已知复数z满足,则________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列各项均为正数,,,.(1)若,①求的值;②猜想数列的通项公式,并用数学归纳法证明;(2)若,证明:当时,.18.(12分)为回馈顾客,新华都购物商场拟通过摸球兑奖的方式对500位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球(球的大小、形状一模一样),球上所标的面值之和为该顾客所获的奖励额.(1)若袋中所装的4个球中有1个所标的面值为40元,其余3个所标的面值均为20元,求顾客所获的奖励额的分布列及数学期望;(2)商场对奖励总额的预算是30000元,并规定袋中的4个球由标有面值为20元和40元的两种球共同组成,或标有面值为15元和45元的两种球共同组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡.请对袋中的4个球的面值给出一个合适的设计,并说明理由.提示:袋中的4个球由标有面值为a元和b元的两种球共同组成,即袋中的4个球所标的面值“既有a元又有b元”.19.(12分)设数列an的前项为Sn,点n,Snn,n∈(1)求数列an(2)设bn=3an⋅an+120.(12分)如图,圆锥的轴截面为等腰为底面圆周上一点.(1)若的中点为,求证:平面;(2)如果,求此圆锥的体积;(3)若二面角大小为,求.21.(12分)假设某种人寿保险规定,投保人没活过65岁,保险公司要赔偿10万元;若投保人活过65岁,则保险公司不赔偿,但要给投保人一次性支付4万元已知购买此种人寿保险的每个投保人能活过65岁的概率都为,随机抽取4个投保人,设其中活过65岁的人数为,保险公司支出给这4人的总金额为万元(参考数据:)(1)指出X服从的分布并写出与的关系;(2)求.(结果保留3位小数)22.(10分)如图,已知三棱柱的侧棱与底面垂直,,分别是的中点.(1)求异面直线与所成角的余弦值;(2)求二面角的余弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】试题分析:设F(x)=f(x)-g(x),∵在[A,B]上f'(x)<g'(x),F′(x)=f′(x)-g′(x)<0,∴F(x)在给定的区间[A,B]上是减函数.∴当x>A时,F(x)<F(A),即f(x)-g(x)<f(A)-g(A)即f(x)+g(A)<g(x)+f(A)考点:利用导数研究函数的单调性2、D【解析】第一步,他进门,有7种选择;第二步,他出门,有7种选择.根据分步乘法计数原理可得他进出门的方案有7×7=49(种).3、D【解析】

由为上的减函数,根据和时,均单调递减,且,即可求解.【详解】因为函数为上的减函数,所以当时,递减,即,当时,递减,即,且,解得,综上可知实数的取值范围是,故选D.【点睛】本题主要靠考查了分段函数的单调性及其应用,其中熟练掌握分段的基本性质,列出相应的不等式关系式是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.4、D【解析】分析:先根据诱导公式得,再利用二倍角公式以及弦化切得结果.详解:因为,所以,因此,选D.点睛:应用三角公式解决问题的三个变换角度(1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”.(2)变名:通过变换函数名称达到减少函数种类的目的,其手法通常有“切化弦”、“升幂与降幂”等.(3)变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有:“常值代换”、“逆用变用公式”、“通分约分”、“分解与组合”、“配方与平方”等.5、A【解析】

观察图形,发现,第一个图案中有一个正六边形,第二个图案中有7个正六边形;…根据这个规律,即可确定第10个图案中正六边形的个数.【详解】由图可知,,…故选A.【点睛】此类题要能够结合图形,发现规律:当时,6、A【解析】试题分析:∵函数是定义在上的奇函数,∴,令代入可得,函数关于对称,由函数的图象与函数的图象关于直线对称,函数关于对称从而有,故选A.考点:奇偶函数图象的对称性.【思路点睛】利用奇函数的定义可把已知转化为,从而可得函数关于对称,函数的图象与函数的图象关于直线对称,则关于对称,代入即可求出结果.7、D【解析】令x=1得a=1.故原式=.的通项,由5-2r=1得r=2,对应的常数项=80,由5-2r=-1得r=3,对应的常数项=-40,故所求的常数项为40,选D解析2.用组合提取法,把原式看做6个因式相乘,若第1个括号提出x,从余下的5个括号中选2个提出x,选3个提出;若第1个括号提出,从余下的括号中选2个提出,选3个提出x.故常数项==-40+80=408、A【解析】

根据题意,需要将5个安保小组分成三组,分析可得有2种分组方法:按照1、1、3分组或按照1、2、2分组,求出每一种情况的分组方法数目,由加法计数原理计算可得答案.【详解】根据题意,三个区域至少有一个安保小组,所以可以把5个安保小组分成三组,有两种分法:按照1、1、3分组或按照1、2、2分组;若按照1、1、3分组,共有种分组方法;若按照1、2、2分组,共有种分组方法,根据分类计数原理知共有60+90=150种分组方法.故选:A.【点睛】本题考查排列、组合及简单计数问题,本题属于分组再分配问题,根据题意分析可分组方法进行分组再分配,按照分类计数原理相加即可,属于简单题.9、B【解析】

由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出,分析循环中各变量的变化情况,可得答案.【详解】当时,,,满足进行循环的条件;当时,,,满足进行循环的条件;当时,,,满足进行循环的条件;当时,,,不满足进行循环的条件;故选:B【点睛】本题主要考查程序框图,解题的关键是读懂流程图各个变量的变化情况,属于基础题.10、A【解析】试题分析:“甲队获胜”包括两种情况,一是2:0获胜,二是2:1获胜.根据题意若是甲队2:0获胜,则比赛只有2局,其概率为(23)2=49;若是甲队2:1获胜,则比赛3局,其中第3考点:相互独立事件的概率及n次独立重复试验.【方法点晴】本题主要考查了相互独立事件的概率及n次独立重复试验,属于中档题.本题解答的关键是读懂比赛的规则,尤其是根据“采用三局两胜制比赛,即先胜两局者获胜且比赛结束”把整个比赛所有的可能情况分成两类,甲队以2:0获胜或2:1获胜,据此分析整个比赛过程中的每一局的比赛结果,根据相互独立事件的概率乘法公式及n次独立重复试验概率公式求得每种情况的概率再由互斥事件的概率加法公式求得答案.11、B【解析】

根据排列数的定义可得出答案.【详解】,故选B.【点睛】本题考查排列数的定义,熟悉排列数公式是解本题的关键,考查理解能力,属于基础题.12、C【解析】

由已知可求出,进而可求出,即可得到回归方程,令,可求出答案.【详解】由题意,,因为,所以,则回归直线方程为.当时,.故选C.【点睛】本题考查了线性回归方程的求法,考查了计算能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

求出原函数的导函数,得到(e),再求出(e)的值,则由直线方程的点斜式可得切线方程.【详解】由,得,(e).即曲线在点,(e)处的切线的斜率为2,又(e).曲线在点,(e)处的切线方程为,即.故答案为:【点睛】本题考查利用导数研究曲线上某点处的切线方程,曲线上过某点的切线的斜率,就是该点处的导数值.14、390【解析】

用2色涂格子有种方法,

用3色涂格子,第一步选色有,第二步涂色,共有种,

所以涂色方法种方法,

故总共有390种方法.

故答案为:39015、3【解析】

根据题目可知,平移直线,当直线与阴影部分在上方相切时取得最大值,根据相切关系求出切点,代入,即可求解出答案。【详解】由题意知,与相切时,切点在上方时取得最大值,如图;此时,且,解得所以的最大值为3,故答案为3。【点睛】本题主要考查了线性规划中求目标函数的最值问题,形如题目中所示的目标函数常化归为求纵截距范围或极值问题。16、3-i【解析】

利用复数的运算法则、共轭复数的性质即可得出.【详解】解:(z﹣2)i=1+i,则(z﹣2)i•(﹣i)=﹣i(1+i),可得z=2﹣i+1=3﹣i.故答案为:3﹣i.【点睛】本题考查了复数的运算法则、共轭复数的性质,考查了推理能力与计算能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)①;;②(2)见证明【解析】

(1)①根据递推公式,代入求值即可;②观察已知的数列的前几项,根据其特征,先猜想其通项公式,之后应用数学归纳法证明即可得结果;(2)应用数学归纳法证明.【详解】(1)当时,即当时,当时,当时,②由此猜想:证明如下:①当时,,成立;②假设当时,猜想也成立,即,则当时,.即当时,猜想也成立.由①②得,猜想成立,即.()(2)当时,即当时,由知不等式成立.假设当时,命题也成立,即.由即当时,命题也成立.由①②得,原命题成立,即当时,.【点睛】该题考查的是数列的有关问题,涉及到的知识点有根据递推公式求数列的特定项,根据已知的数列的前几项猜想数列的通项公式,应用数学归纳法证明问题,属于中档题目.18、(1)分布列见解析;期望为50;(2)应该选择面值设计方案“”,即标有面值元和面值元的球各两个【解析】

(1)设顾客获得的奖励额为,随机变量的可能取值为,分别求出对应概率,列出分布列并求出期望即可;(2)分析可知期望为60元,讨论两种方案:若选择“”的面值设计,只有“”的面值组合符合期望为60元,求出方差;当球标有的面值为元和元时,面值设计是“”符合期望为60元,求出方差,比较两种情况的方差,即可得出结论.【详解】解:(1)设顾客获得的奖励额为,随机变量的可能取值为.,,所以的分布列如下:所以顾客所获的奖励额的期望为(2)根据商场的预算,每个顾客的平均奖励额为元.所以可先寻找使期望为60元的可能方案:当球标有的面值为元和元时,若选择“”的面值设计,因为元是面值之和的最大值,所以期望不可能为;若选择“”的面值设计,因为元是面值之和的最小值,所以期望不可能为.因此可能的面值设计是选择“”,设此方案中顾客所获得奖励额为,则的可能取值为..的分布列如下:所以的期望为的方差为当球标有的面值为元和元时,同理可排除“”、“”的面值设计,所以可能的面值设计是选择“”,设此方案中顾客所获的奖励额为,则的可能取值为..的分布列如下:所以的期望为的方差为因为即两种方案奖励额的期望都符合要求,但面值设计方案“”的奖励额的方差要比面值设计方案“”的方差小,所以应该选择面值设计方案“”,即标有面值元和面值元的球各两个.【点睛】本题考查了离散型随机变量的分布列,考查了期望与方差的应用,考查了学生的计算能力,属于中档题.19、(1)an=6n-5【解析】

分析:(1)点n,Snnn∈N*均在函数y=3x-2(2)由bn=3an详解:(1)∵点n,Snn∴Snn=3n-2,当n≥2经检验:n=1时满足上式∴a(2)bnT==12点睛:在应用裂项相消法时,要注意消项的规律具有对称性,即前剩多少项则后剩多少项.20、(1)证明见解析(2)(3)60°【解析】

(1)连接、,由三角形中位线定理可得,由圆周角定理我们可得,由圆锥的几何特征,可得,进而由线面垂直的判定定理,得到平面,则,结合及线面垂直的判定定理得到平面;(2)若,易得,又由,我们求出圆锥的底面半径长及圆锥的高,代入圆锥体积公式,即可得到圆锥的体积;(3)作于点,由面面垂直的判

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论