上海财经大学英语高数课件_第1页
上海财经大学英语高数课件_第2页
上海财经大学英语高数课件_第3页
上海财经大学英语高数课件_第4页
上海财经大学英语高数课件_第5页
已阅读5页,还剩36页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Chapter0ne

LimitsandRatesofChangeupdownreturn

endupdownreturnend11.4ThePreciseDefinitionofaLimit

Weknowthatitmeansf(x)ismovingclosetoLwhilexismovingclosetoaaswedesire.AnditcanreachesLasnearaswelikeonlyonconditionofthexisinaneighbor.(2)DEFINITIONLetf(x)beafunctiondefinedonsomeopenintervalthatcontainsthenumbera,exceptpossiblyataitself.Thenwesaythatthelimitoff(x)asxapproachesaisL,andwewrite,ifforverynumber>0thereisacorrespondingnumber>0suchthat|f(x)-L|<whenever0<|x-a|<.updownreturn

endHowtogivemathematicaldescriptionof1.4ThePreciseDefinition2

Inthedefinition,themainpartisthatforarbitrarily>0,thereexistsa>0suchthatifallxthat0<|x-a|<then|f(x)-L|<.

Anothernotationforisf(x)Lasxa.Geometricinterpretationoflimitscanbegivenintermsofthegraphofthefunctiony=L+

y=L-

y=L

a

a-a+oxy=f(x)yupdownreturn

endInthedefinition,themai3Example1ProvethatSolution

Letbeagivenpositivenumber,wewanttofindapositivenumbersuchthat|(4x-5)-7|<whenever0<|x-3|<.But|(4x-5)-7|=4|x-3|.Therefore

4|x-3|<whenever0<|x-3|<.Thatis,|x-3|</4whenever0<|x-3|<.Example2ProvethatExample3Provethatupdownreturn

endExample1ProvethatSolution4

Example4

Provethat

Similarlywecangivethedefinitionsofone-sidedlimitsprecisely.(4)DEFINITIONOFLEFT-SIDEDLIMIT

Ifforeverynumber>0thereisacorrespondingnumber>0suchthat|f(x)-L|<whenever0<a

-

x<,i.e,a

-<

x<

a.(5)DEFINITIONOFLEFT-SIDEDLIMIT

Ifforeverynumber>0thereisacorrespondingnumber>0suchthat|f(x)-L|<whenever0<x-a<,i.e,a

<

x<

a+.

Example5

Provethatupdownreturn

endExample4ProvethatSimilar5

Example6If

provethat(6)DEFINITIONLetf(x)beafunctiondefinedonsomeopenintervalthatcontainsthenumbera,exceptpossiblyataitself.Thenwesaythatthelimitoff(x)asxapproachesaisinfinity,andwewrite,ifforverynumberM>0thereisacorrespondingnumber>0suchthat

f(x)>Mwhenever0<|x-a|<.updownreturn

endExample6Ifprovethat(6)6ExampleProvethat

Example5

Provethat(6)DEFINITIONLetf(x)beafunctiondefinedonsomeopenintervalthatcontainsthenumbera,exceptpossiblyataitself.Thenwesaythatthelimitoff(x)asxapproachesaisinfinity,andwewrite,ifforverynumber

N<0thereisacorrespondingnumber>0suchthat

f(x)<Nwhenever0<|x-a|<.updownreturn

endExampleProvethatExample57

Similarly,wecangivethedefinitionsofone-sideinfinitelimits.ExampleProvethatExampleProvethatExampleProvethatupdownreturn

endSimilarly,wecangivethe81.5Continuity

Iff(x)notcontinuousata,wesayf(x)isdiscontinuousata,orf(x)hasadiscontinuityata.(1)DefinitionAfunctionf(x)iscontinuousatanumberaif.(3)Afunctionf(x)iscontinuousatanumberaifandonlyifforeverynumber>0thereisacorrespondingnumber>0suchthat|f(x)-f(a)|<whenever|x-a|<.Notethat:(1)f(a)isdefined(2)exists.updownreturn

end1.5ContinuityIff(x)notco9Exampleisdiscontinuousatx=2,sincef(2)isnotdefined.Exampleiscontinuousat

x=2..ExampleProvethatsinxiscontinuousatx=a.(2)DefinitionAfunctionf(x)iscontinuousfromtherightateverynumberaifAfunctionf(x)iscontinuousfromtheleftateverynumberaifupdownreturn

endExample10(2)DefinitionAfunctionf(x)iscontinuousonanintervalifitiscontinuousateverynumberintheinterval.(atanendpointoftheintervalweunderstandcontinuoustomeancontinuousfromtherightorcontinuousfromtheleft)ExampleAteachintegern,thefunctionf(x)=[x]iscontinuousfromtherightanddiscontinuousfromtheleft.ExampleShowthatthefunctionf(x)=1-(1-x2)1/2iscontinuousontheinterval[-1,1].(4)TheoremIffunctionsf(x),g(x)iscontinuousataandcisaconstant,thenthefollowingfunctionsarecontinuousata:1.f(x)+g(x)2.f(x)-g(x)

3.f(x)g(x)4.f(x)[g(x)]-1(g(a)isn’t0.)updownreturn

end(2)DefinitionAfunctionf(11(5)THEOREM(a)anypolynomialiscontinuouseverywhere,thatis,itiscontinuousonR1=().(b)anyrationalfunctioniscontinuouswhereveritisdefined,thatis,itiscontinuousonitsdomain.Example

Find(6)THEOREMIfnisapositiveeveninteger,thenf(x)=iscontinuouson[0,).Ifnisapositiveoddinteger,thenf(x)=iscontinuouson().Example

Onwhatintervalsiseachfunctioncontinuous?updownreturn

end(5)THEOREM(a)anypolynom12(8)THEOREMIfg(x)

iscontinuousataand

f(x)

iscontinuousatg(a)then(fog)(x))=

f(g(x))

iscontinuousata.(7)THEINTERMEDIATEVALUETHEOREMSupposethatf(x)

iscontinuousontheclosedinterval[a,b].LetNbeanynumberstrictlybetweenf(a)andf(b).Thenthereexistsanumbercin(a,b)suchthatf(c)=Nyxby=Na(7)THEOREMIff(x)

iscontinuousatband,then

updownreturn

end(8)THEOREMIfg(x)isconti13ExampleShowthatthereisarootoftheequation4x3-6x2+3x-2=0between1and2.updownreturn

endExampleShowthatthereisa141.6Tangent,andOtherRatesofChangeA.Tangent(1)Definition

TheTangentlinetothecurvey=f(x)atpointP(a,f(a))isthelinethroughPwithslopeprovidedthatthislimitexists.ExampleFindtheequationofthetangentlinetotheparabolay=x2atthepointP(1,1).updownreturn

end1.6Tangent,andOtherRates15B.OtherratesofchangeThedifferencequotient

iscalledtheaverageratechangeofywithrespectxovertheinterval[x1,x2].(4)

instantaneousrateofchange=atpointP(x1,f(x1))withrespecttox.Supposeyisaquantitythatdependsonanotherquantityx.Thusyisafunctionofxandwewritey=f(x).Ifxchangesfromx1andx2,thenthechangeinx(alsocalledtheincrementofx)isx=x2-

x1andthecorrespondingchangeinyisx=f(x2)-f(x1).updownreturn

endB.OtherratesofchangeThedi16

(1)whatisatangenttoacircle?

Canwecopythedefinitionofthetangenttoacirclebyreplacingcirclebycurve?1.1ThetangentandvelocityproblemsThetangenttoacircleisalinewhichintersectsthecircleonceandonlyonce.Howtogivethedefinitionoftangentlinetoacurve?Forexample,updownreturn

end(1)whatisatangenttoa17

Fig.(a)InFig.(b)therearestraightlineswhichtouchthegivencurve,

buttheyseemtobedifferentfrom

thetangenttothecircle.

L2Fig.(b)L1updownreturn

endFig.(a)InFig.(b)therea18Letusseethetangenttoacircleasamovinglinetoacertainline:Sowecanthinkthetangenttoacurveisthelineapproachedbymovingsecantlines.PQupdownreturn

endQ'Letusseethetangenttoaci19

x

mPQ231.52.51.12.11.012.011.0012.001Example1:Findtheequationofthetangentlinetoaparabolay=x2atpoint(1,1).Qisapointonthecurve.Q

y=x2

Pupdownreturn

end

20ThenwecansaythattheslopemofthetangentlineisthelimitoftheslopesmQPofthesecantslines.AndweexpressthissymbolicallybywritingAndSowecanguessthatslopeofthetangenttotheparabolaat(1,1)isveryclosedto2,actuallyitis2.Thentheequationofthetangentlinetotheparabolaisy-1=2(x-2)i.ey=2x-3.updownreturn

endThenwecansaythattheslope21SupposethataballisdroppedfromtheupperobservationdeckoftheOrientalPearlTowerinShanghai,280mabovetheground.Findthevelocityoftheballafter5seconds.Fromphysicsweknowthatthedistancefallenaftertsecondsisdenotedbys(t)andmeasuredinmeters,sowehaves(t)=4.9t2.Howtofindthevelocityatt=5?(2)

Thevelocityproblem:Solutionupdownreturn

endSupposethataballisdropped22Sowecanapproximatethedesiredquantitybycomputingtheaveragevelocityoverthebrieftimeintervalofthen-thofasecondfromt=5,suchas,thetenth,twenty-thandsoon.Thenwehavethetable:TimeintervalAveragevelocity(m/s)5<t<653.95<t<5.149.495<t<5.0549.2455<t<5.0149.0495<t<5.00149.0049Sowecanapproximatethedesi23Theabovetableshowsustheresultsofsimilarcalculationsofaveragevelocityoversuccessivelysmallertimeperiods.Italsoappearsthatastimeperiodtendsto0,theaveragevelocityisbecomingcloserto49.Sotheinstantaneousvelocityatt=5isdefinedtobethelimitingvalueoftheseaveragevelocitiesovershortertimeperiodsthatstartatt=5.updownreturn

endTheabovetableshowsusthe24

1.2TheLimitofaFunction

Letusinvestigatethebehaviorofthefunctiony=f(x)=x2-x+2forvaluesofxnear2.

x

f(x)x

f(x)1.02.0000003.08.0000001.52.7500002.55.7500001.83.4400002.24.6400001.93.7100002.14.3100001.953.8525002.054.1525001.993.9701002.014.0301001.9953.9850252.0014.003001updownreturn

end1.2TheLimitofaFunction25Weseethatwhenxiscloseto2(x>2orx<2),f(x)iscloseto4.Thenwecansaythat:thelimitofthefunction

f(x)=x2-x+2asxapproaches2isequalto4.

Thenwegiveanotationforthis:Ingeneral,thefollowingnotation:Weseethatwhenxiscloseto26(1)Definition:Wewrite

Guessthevalueof.Noticethatthefunctionisnotdefinedatx=1,and

x<1f(x)x>1f(x)0.50.6666671.50.4000000.90.5263161.10.4761900.990.5025131.010.4975120.9990.5002501.0010.4997500.999.0.5000251.00010.499975Example1updownreturn

endandsay“thelimitoff(x),asxapproachesa,equalsL”.SolutionIfwecanmakethevaluesoff(x)arbitrarilyclosetoL(asclosetoLaswelike)bytakingxtobesufficientlyclosetoabutnotequaltoa.Sometimesweusenotationf(x)Lasx

a.(1)Definition:WewriteGues27

Example1

FindExample2

FindNoticethatasx

awhichmeansthatxapproachesa,xmay>aandxmay<a.Example3

Discuss,whereThefunctionH(x)approaches0asxapproaches0andx<0,anditapproaches1,asxapproaches0andx>0.SowecannotsayH(x)approachesanumberasx

a.updownreturn

endExample1FindExample2Fi28One-sideLimits:EventhoughthereisnosinglenumberthatH(x)approachesastapproaches0.thatis,doesnotexist.Butastapproaches0fromleft,t<0,H(x)approaches0.Thenwecanindicatethissituationsymbolicallybywriting:Butastapproaches0fromright,t>0,H(x)approaches1.Thenwecanindicatethissituationsymbolicallybywriting:updownreturn

endOne-sideLimits:Eventhought29WewriteAndsaytheleft-handlimitoff(x)asxapproachesa(orthelimitoff(x)asxapproachesafromleft)isequaltoL.Thatis,wecanmakethevalueoff(x)arbitrarilyclosetoLbytakingxtobesufficientlyclosetoaandxlessthana.Andsaytheright-handlimitoff(x)asxapproachesa(orthelimitoff(x)asxapproachesafromright)isequaltoL.Thatis,wecanmakethevalueoff(x)arbitrarilyclosetoLbytakingxtobesufficientlyclosetoaandxgreaterthana.WewriteHerex

a+”meansthatxapproachesaandx>a.(2)Definition:Herex

a-”meansthatxapproachesaandx<a.updownreturn

endWewriteAndsaytheleft-hand30SeefollowingFigure:Whatwillithappenasx

a

orx

b?

xOaby=f(x)yupdownreturn

endSeefollowingFigure:Whatwill31(3)Theorem:ifandonlyifExample:Find.

x1/x2±11±0.54±0.225±0.1100±0,05400±0,0110000±0.0011000000xy=1/x2Oyupdownreturn

end(3)Theorem:ifandonlyifExamp32Toindicatethekindofbehaviorexhibitedinthisexample,weusethenotation:GenerallywecangivefollowingExampleFindTheanothernotationforthisisf(x)asx

a,whichisreadas“thelimitoff(x),asxapproachesa,isinfinity”or“f(x)becomesinfinityasxapproachesa”or“f(x)increaseswithoutboundasxapproachesa”.(4)DEFINITION:Letfbeafunctiononbothsidesofa,exceptpossiblyataitself.Thenmeansthatvaluesoff(x)canbemadearbitrarilylarge(asweplease)bytakingxsufficientlyclosetoa(butnotequaltoa).updownreturn

endToindicatethekindofbehavi33y=f(x)=ln|x|yx

Obviouslyf(x)=ln|x|becomeslargenegativeasxgetscloseto0.(5)DEFINITION:Letfbeafunctiononbothsidesofa,exceptpossiblyataitself.Thenmeansthatvaluesoff(x)canbemadearbitrarilylarge(asweplease)bytakingxsufficientlyclosetoa(butnotequaltoa).Theanothernotationforthisisf(x)-asx

a,whichisreadas“thelimitoff(x),asxapproachesa,isnegativeinfinity”or“f(x)becomesnegativeinfiniteasxapproachesa”or“f(x)decreaseswithoutboundasxapproachesa”.updownreturn

endy=f(x)=ln|x|yxObviouslyf(x)=34(6)DEFINITION:Thelinex=aiscalledaverticalasymptoteofthecurvey=f(x)ifatleastoneofthefollowingstatementsistrue:Similardefinitionscanbe

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论