离散型随机变量数字特征课件_第1页
离散型随机变量数字特征课件_第2页
离散型随机变量数字特征课件_第3页
离散型随机变量数字特征课件_第4页
离散型随机变量数字特征课件_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

知识回顾1:离散型随机变量及分布■随机变量■离散型(1)随机试验的结果不确定;变量取值随机;取值概率确定。(1)变量的可能取值能一一列举出来备注:若变量不能一一列举出来,而是连续的充满某个区间,称为连续性随机变量■分布列(1)表格 (2)变量取值、取值所对应的概率(3)概率大于等于0小于等于1(4)概率之和=1变量具有明确的对象知识回顾1:离散型随机变量及分布■随机变量■离散型(1)随机1均值或平均数作用:反映这组数据的平均水平方差作用:反映这组数据与均值的偏离或离散程度知识回顾1:均值及方差均值或平均数作用:反映这组数据的平均水平方差作用:反映这组数2例1:某班有学生30人,某次计算机基础测试的分数分布如下:70分8人,84分10人,90分10人,95分2人,则:①求出此次测验的平均分及方差。②求出以此次分数为随机变量η的概率分布。

巩固练习1:解:①1)由题意可得:即平均数为83。多个分式相加减,分母不变,分子相加减例1:某班有学生30人,某次计算机基础测试的分数分布如下:73例1:某班有学生30人,某次计算机基础测试的分数分布如下:70分8人,84分10人,90分10人,95分2人,则:①求出此次测验的平均分及方差。②求出以此次分数为随机变量η的概率分布。

巩固练习1:解:2)由题意可得:即方差为。多个分式相加减,分母不变,分子相加减例1:某班有学生30人,某次计算机基础测试的分数分布如下:74例1:某班有学生30人,某次计算机基础测试的分数分布如下:70分8人,84分10人,90分10人,95分2人,则:①求出此次测验的平均分及方差。②求出以此次分数为随机变量η的概率分布。

巩固练习1:解:②由题意可得:P(η=70)= P(η=84)=

P(η=70)= P(η=95)=例1:某班有学生30人,某次计算机基础测试的分数分布如下:75例1:某班有学生30人,某次计算机基础测试的分数分布如下:70分8人,84分10人,90分10人,95分2人,则:①求出此次测验的平均分及方差。②求出以此次分数为随机变量η的概率分布。

巩固练习1:解:②则η的概率分布为例1:某班有学生30人,某次计算机基础测试的分数分布如下:76■将例1中类似通分的过程全部还原成分式相加减的形式,分析展开的形式有什么特征。思考1:各变量与自身概率之积的和■将例1中类似通分的过程全部还原成分式相加减的形式,分析展开7思考1:各变量与自身概率之积的和思考1:各变量与自身概率之积的和8猜想:在随机变量中,变量的均值=每一个数据×数据对应的概率之和方差=每一个数据与均值差的平方之和猜想:EX:从编号为1,2,3,4的4个形状大小完全相同的球中,任取一个球,求所取球的号码ζ的概率分布、均值及方差。分析:随机变量ζ的所有可能取值:1,2,3,4,取这些值的概率依次为:,,,故其概率分布为猜想:在随机变量中,变量的猜想:EX:从编号为1,2,3,49猜想:EX:从编号为1,2,3,4的4个大小相同的球中,任取一个球,求所求的号码ζ的概率分布、均值、方差。分析:随机变量ζ的所有可能取值:1,2,3,4,取这些值的概率依次为:,,,故其概率分布为猜想:EX:从编号为1,2,3,4的4个大小相同的球中,任取10猜想:猜想:11总结:则:ζ的均值E(ζ)=方差D(ζ)=设离散型随机变量ζ的所有为有限个值其概率分布为备注:均值即为数学期望总结:则:ζ的均值E(ζ)=设离散型随机变量ζ的所有为有限个12■已知离散型随机变量ζ的概率分布为求随机变量ζ的均值与方差。练习:■已知离散型随机变量ζ的概率分布为求随机变量ζ的均值与方差。■已知离散型随机变量ζ的概率分布为练习:■已知离散型随机变量13■盒中装有2支白粉笔和3支红粉笔,从中任意取出3支,其中所含白粉笔的支数为η,求η的概率分布、均值及方差。练习:■已知离散型随机变量ζ的概率分布为其中m,n{0,1)且E(ζ)=1/6,求m,n的值。■盒中装有2支白粉笔和3支红粉笔,从中任意取出3支,其中所含14本节课小结随机变量ζ:的数字特征:本节课小结随机变

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论