




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
22.3实际问题与二次函数
第2课时实际问题与二次函数(2)R·九年级上册22.3实际问题与二次函数
第2课时实际问题与二次函新课导入导入课题问题:某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,如何定价才能使利润最大?新课导入导入课题问题:某商品现在的售价为每件60元,每星期可(1)能用二次函数表示实际问题中的数量关系(包括写出解析式、自变量的取值范围、画图象草图).(2)会用二次函数求销售问题中的最大利润.重点:建立销售问题中的二次函数模型.难点:建立二次函数模型.学习目标学习重、难点:(1)能用二次函数表示实际问题中的数量关系(包括写出解析式、推进新课
某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,如何定价才能使利润最大?探究思考该问题中:
1、有几种调整价格的情况?
2、如何计算利润?涨价和降价利润=(售价-进价)×销量推进新课某商品现在的售价为每件60元,每星解:(1)设每件涨价n元,利润为y1.则y1=(60+n–40)(300–10n)即y1=-10n2+100n+6000其中,0≤n≤30.利润=(售价-进价)×销量可得:0≤n≤30.406030060+n300-10n60-m300+20m4040怎样确定n的取值范围?解:(1)设每件涨价n元,利润为y1.利润=(售价-进y1=-10n2+100n+6000(0≤n≤30)
抛物线y1=-10n2+100n+6000顶点坐标为
,所以商品的单价上涨
元时,利润最大为
元.(5,6250)56250n取何值时,y有最大值?最大值是多少?=-10(n2-10n)+6000=-10(n-5)2+6250即涨价情况下,定价65元时,有最大利润6250元.涨价:y1=-10n2+100n+6000(0≤n≤30)降价情况下的最大利润又是多少呢?降价情况下的最大利润又是多少呢?406030060+n300-10n60-m300+20m4040解:(2)设每件降价m元,利润为y2.则y2=(60-m–40)(300+20m)即y2=-20m2+100m+6000其中,0≤n≤20.怎样确定m的取值范围?可得:0≤n≤20.406030060+n300-10n60-m300+20m4y2=-20m2+100m+6000(0≤n≤20)
抛物线y2=-20m2+100m+6000顶点坐标为
,所以商品的单价上涨
元时,利润最大为
元.(2.5,6125)2.56125n取何值时,y有最大值?最大值是多少?即降价情况下,定价57.5元时,有最大利润6125元.降价:=-20(m2-5m)+6000=-20(m-2.5)2+6125y2=-20m2+100m+6000(0≤n≤20(2)降价情况下,定价57.5元时,有最大利润6125元.(1)涨价情况下,定价65元时,有最大利润6250元.综合以上可知:该商品的价格定价为65元时,可获得最大利润6250元。(2)降价情况下,定价57.5元时,有最大利润6125元.(随堂演练基础巩固1.下列抛物线有最高点或最低点吗?如果有,写出这些点的坐标(用公式):(1)y=-4x2+3x;(2)y=3x2+x+6.随堂演练基础巩固1.下列抛物线有最高点或最低点吗?如果有,写2.某种商品每件的进价为30元,在某段时间内若以每件x元出售,可卖出(200-x)件,应如何定价才能使利润最大?解:设所得利润为y元,由题意得y=x(200-x)-30(200-x)=-x2+230x-6000=-(x-115)2+7225(0<x<200)当x=115时,y有最大值.即当这件商品定价为115元时,利润最大.2.某种商品每件的进价为30元,在某段时间内若以每件x元出售综合应用3.某种文化衫,平均每天盈利20元,若每件降价1元,则每天可多售10件,如果每天要盈利最多,每件应降价多少元?解:设每件应降价x元,每天的利润为y元,由题意得:y=(20-x)(40+10x)
=-10x2+160x+800
=-10(x-8)2+1440(0<x<20).当x=8时,y有最大值1440.即当每件降价8元时,每天的盈利最多。综合应用3.某种文化衫,平均每天盈利20元,若每件降价1元,拓展延伸4.求函数y=-x2+6x+5的最大值和最小值.(1)0≤x≤6;(2)-2≤x≤2.解:y=-x2+6x+5=-(x-3)2+14(1)当0≤x≤6时,当x=3时,y有最大值14,当x=0或6时,y有最小值5.(2)当-2≤x≤2时,当x=2时,y有最大值13,当x=-2时,y有最小值-11.拓展延伸4.求函数y=-x2+6x+5的最大值和最小值.解:课堂小结利用二次函数解决利润问题的一般步骤:(1)审清题意,理解问题;(2)分析问题中的变量和常量以及数量之间的关系;(3)列出函数关系式;(4)求解数学问题;(5)求解实际问题.课堂小结利用二次函数解决利润问题的一般步骤:课后作业1.从课后习题中选取;2.完成练习册本课时
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 知识普及的考试试题及答案
- 2024年秘书证考试能力建设试题及答案
- 2025中国贸易合同范本
- 2025年福州市房地产买卖合同(甲种本买卖)
- 2025水果种子买卖合同协议书
- 新生儿动脉栓塞的护理
- 甘肃历年国考试题及答案
- 教育强国建设的战略规划与实施路径
- 绿色转型加速:全球与中国清洁能源市场现状及前景分析
- 哈尔滨商业大学《英文报刊时文赏析》2023-2024学年第一学期期末试卷
- JJF(纺织)095-2020土工布磨损试验机校准规范
- JJG 384-2002光谱辐射照度标准灯
- 报销单填写模板
- 教师职业道德第二节-爱岗敬业资料课件
- 十八项核心医疗制度试题
- 美国、加拿大签证申请表
- 比较学前教育名词解释
- 区级综合医院关于落实区领导干部医疗保健工作实施方案
- 申请XXX最低生活保障不予确认同意告知书
- 城市雕塑艺术工程量清单计价定额2020版
- 河池市出租车驾驶员从业资格区域科目考试题库(含答案)
评论
0/150
提交评论