版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023高二下数学模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,若有且仅有两个整数,使得,则的取值范围为()A. B. C. D.2.已知为虚数单位,若复数在复平面内对应的点在第四象限,则的取值范围为()A. B. C. D.3.定积分()A.1 B.2 C.3 D.44.已知向量,若,则()A. B. C. D.5.已知集合,,在集合内随机取一个元素,则这个元素属于集合的概率为()A. B. C. D.6.中国古代儒家提出的“六艺”指:礼、乐、射、御、书、数.某校国学社团预在周六开展“六艺”课程讲座活动,周六这天准备排课六节,每艺一节,排课有如下要求:“乐”与“书”不能相邻,“射”和“御”要相邻,则针对“六艺”课程讲座活动的不同排课顺序共有()A.18种 B.36种 C.72种 D.144种7.在的展开式中,含项的系数为()A.10 B.15 C.20 D.258.复数(i为虚数单位)在复平面内对应的点所在象限为()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.用5种不同颜色给图中的A、B、C、D四个区域涂色,规定一个区域只涂一种颜色,相邻的区域颜色不同,共有种不同的涂色方案.A.420 B.180 C.64 D.2510.函数的定义城是()A. B. C. D.11.已知,若的展开式中各项系数之和为,则展开式中常数项为()A. B. C. D.12.已知为自然对数的底数,若对任意的,总存在唯一的,使得成立,则实数的取值范围是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设集合,,,(1)的取值范围是;(2)若,且的最大值为9,则的值是.14.已知复数,其中是虚数单位,.(1)若,求实数的取值范围;(2)若是关于的方程的一个根,求实数与的值.15.命题“”的否定是__________.16.甲、乙两名运动员进行乒乓球单打比赛,根据以往比赛的胜负情况知道,每一局甲胜的概率为,乙胜的概率为.如果比赛采用“五局三胜”制,求甲以获胜的概率______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥P-ABCD中,底面ABCD是平形四边形,PA⊥平面ABCD,点M,N分别为BC,PA的中点,且AB=AC=1,AD=2(1)证明:MN∥平面PCD;(2)设直线AC与平面PBC所成角为α,当α在(0,π6)内变化时,求二面角P-BC-A的平面角β18.(12分)如图,已知三棱柱,底面,,,为的中点.(I)证明:面;(Ⅱ)求直线与平面所成角的正弦值.19.(12分)已知椭圆:的左、右焦点分别为,,过原点且斜率为1的直线交椭圆于两点,四边形的周长与面积分别为12与.(1)求椭圆的标准方程;(2)直线与圆相切,且与椭圆交于两点,求原点到的中垂线的最大距离.20.(12分)约定乒乓球比赛无平局且实行局胜制,甲、乙二人进行乒乓球比赛,甲每局取胜的概率为.(1)试求甲赢得比赛的概率;(2)当时,胜者获得奖金元,在第一局比赛甲获胜后,因特殊原因要终止比赛.试问应当如何分配奖金最恰当?21.(12分)如图,已知椭圆的离心率是,一个顶点是.(Ⅰ)求椭圆的方程;(Ⅱ)设,是椭圆上异于点的任意两点,且.试问:直线是否恒过一定点?若是,求出该定点的坐标;若不是,说明理由.22.(10分)某保险公司决定每月给推销员确定个具体的销售目标,对推销员实行目标管理.销售目标确定的适当与否,直接影响公司的经济效益和推销员的工作积极性,为此,该公司当月随机抽取了50位推销员上个月的月销售额(单位:万元),绘制成如图所示的频率分布直方图.(1)①根据图中数据,求出月销售额在小组内的频率.②根据直方图估计,月销售目标定为多少万元时,能够使70%的推销员完成任务?并说明理由.(2)该公司决定从月销售额为和的两个小组中,选取2位推销员介绍销售经验,求选出的推销员来自同一个小组的概率.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】分析:数,若有且仅有两个整数,使得,等价于有两个整数解,构造函数,利用导数判断函数的极值点在,由零点存在定理,列不等式组,从而可得结果..详解:因为所以函数,若有且仅有两个整数,使得,等价于有两个整数解,设,令,令恒成立,单调递减,又,存在,使递增,递减,若解集中的整数恰为个,则是解集中的个整数,故只需,故选B.点睛:本题主要考查不等式有解问题以及方程根的个数问题,属于难题.不等式有解问题不能只局限于判别式是否为正,不但可以利用一元二次方程根的分布解题,还可以转化为有解(即可)或转化为有解(即可),另外,也可以结合零点存在定理,列不等式(组)求解.2、B【解析】由题.又对应复平面的点在第四象限,可知,解得.故本题答案选.3、B【解析】
直接利用定积分公式计算得到答案.【详解】.故选:.【点睛】本题考查了定积分,意在考查学生的计算能力.4、C【解析】
首先根据向量的线性运算求出向量,再利用平面向量数量积的坐标表示列出方程,即可求出的值.【详解】因为,,所以,因为,所以,即,解得或,又,所以.故选:C.【点睛】本题主要考查平面向量的线性运算,平面向量数量积的坐标表示,属于基础题.5、D【解析】
利用线性规划可得所在区域三角形的面积,求得圆与三角形的公共面积,利用几何概型概率公式可得结果.【详解】表示如图所示的三角形,求得,,点到直线的距离为,所以,既在三角形内又在圆内的点的轨迹是如图所示阴影部分的面积,其面积等于四分之三圆面积与等腰直角三角形的面积和,即为,所以在集合内随机取一个元素,则这个元素属于集合的概率为,故选D.【点睛】本题主要考查“面积型”的几何概型,属于中档题.解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与面积有关的几何概型问题关鍵是计算问题的总面积以及事件的面积;几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本事件对应的区域测度把握不准导致错误;(3)利用几何概型的概率公式时,忽视验证事件是否等可能性导致错误.6、D【解析】
由排列、组合及简单的计数问题得:由题意可将“射”和“御”进行捆绑看成一个整体,共有种,然后与“礼”、“数”进行排序,共有种,最后将“乐”与“书”插入4个空即可,共有种,再相乘得解.【详解】由题意“乐”与“书”不能相邻,“射”和“御”要相邻,可将“射”和“御”进行捆绑看成一个整体,共有种,然后与“礼”、“数”进行排序,共有种,最后将“乐”与“书”插入4个空即可,共有种,由于是分步进行,所以共有种,故选:D.【点睛】本题考查排列、组合及简单计数问题,根据问题选择合适的方法是关键,此类问题常见的方法有元素优先法、捆绑法、插空法等,本题属于中等题.7、B【解析】分析:利用二项展开式的通项公式求出的第项,令的指数为2求出展开式中的系数.然后求解即可.详解:6展开式中通项
令可得,,
∴展开式中x2项的系数为1,
在的展开式中,含项的系数为:1.
故选:B.点睛:本题考查二项展开式的通项的简单直接应用.牢记公式是基础,计算准确是关键.8、D【解析】
,对应的点为,在第四象限,故选D.9、B【解析】分析:由于规定一个区域只涂一种颜色,相邻的区域颜色不同,可分步进行,区域A有5种涂法,B有4种涂法,C有3种,D有3种涂法,根据乘法原理可得结论.详解:由题意,由于规定一个区域只涂一种颜色,相邻的区域颜色不同,可分步进行,区域A有5种涂法,B有4种涂法,C有3种,D有3种涂法∴共有5×4×3×3=180种不同的涂色方案.故答案为:B.点睛:解答排列、组合应用题要从“分析”、“分辨”、“分类”、“分步”的角度入手.(1)“分析”就是找出题目的条件、结论,哪些是“元素”,哪些是“位置”;(2)“分辨”就是辨别是排列还是组合,对某些元素的位置有、无限制等;(3)“分类”就是将较复杂的应用题中的元素分成互相排斥的几类,然后逐类解决;(4)“分步”就是把问题化成几个互相联系的步骤,而每一步都是简单的排列、组合问题,然后逐步解决.10、C【解析】
根据对数的真数大于零这一原则得出关于的不等式,解出可得出函数的定义域.【详解】由题意可得,解得,因此,函数的定义域为,故选C.【点睛】本题考查对数型函数的定义域的求解,求解时应把握“真数大于零,底数大于零且不为”,考查计算能力,属于基础题.11、B【解析】
通过各项系数和为1,令可求出a值,于是可得答案.【详解】根据题意,在中,令,则,而,故,所以展开式中常数项为,故答案为B.【点睛】本题主要考查二项式定理,注意各项系数之和和二项式系数和之间的区别,意在考查学生的计算能力,难度不大.12、B【解析】,,故函数在区间上递增,,,故函数在上递减.所以,解得,故选B.二、填空题:本题共4小题,每小题5分,共20分。13、(1)(2)【解析】
由图象可得由图象得14、(1);(2)或.【解析】
(1)先写出的表示,然后将模长关系表示为对应的不等式,即可求解出的取值范围;(2)根据是关于的方程的一个根,先求出方程的根,根据复数相等的原则即可求解出实数与的值.【详解】(1)因为,,所以,所以,所以,所以;(2)因为是关于的方程的一个根,所以方程有两个虚根,所以,因为是方程的一个根,所以,所以或.【点睛】本题考查复数模长的计算以及有关复数方程的解的问题,难度一般.(1)已知,则;(2)若两个复数相等,则复数的实部和实部相等,虚部和虚部相等.15、【解析】
利用全称命题的否定可得出答案.【详解】由全称命题的否定可知,命题“”的否定是“,”,故答案为“,”.【点睛】本题考查全称命题的否定,熟记全称命题与特称命题的否定形式是解本题的关键,属于基础题.16、【解析】
利用二项分布可求甲以获胜的概率.【详解】设“甲班以3:1”获胜为事件.若甲班以3:1获胜,则前3局甲班恰好胜2局,然后第4局胜.所以,.故答案为:.【点睛】本题考查古典概型的概率的计算,注意利用常见的分布(如二项分布、超几何分布等)来帮助计算概率,本题为基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)(0,【解析】试题分析:(Ⅰ)根据直线与平面平行的判定定理,需在平面PCD内找一条与MN平行的直线.结合题设可取取PD中点Q,连接NQ,CQ,易得四边形CQNM为平行四边形,从而得MN//CQ,问题得证.(Ⅱ)思路一、首先作出二面角的平面角,即过棱BC上一点分别在两个平面内作棱BC的垂线.因为AB=AC=1,点M分别为BC的中点,则AM⊥BC.连接PM,因为PA⊥平面ABCD,所以AM是PM在面ABC内的射影,所以PM⊥BC,所以∠PMA即为二面角P-BC-A的平面角.再作出直线AC与平面PBC所成的角,即作出AC在平面PBC内的射影.由PM⊥BC,AM⊥BC且AM∩PM=M得BC⊥平面PAM,从而平面PBC⊥平面PAM.过点A在平面PAM内作AH⊥PM于H,根据面面垂直的性质知AH⊥平面PBC.连接CH,于是∠ACH就是直线AC与平面PBC所成的角.在Rt△AHM及Rt△AHC中,找出∠PMA与α的关系,即可根据α的范围求出∠PMA的范围.思路二、以所在的直线分别为x轴、y轴、z轴,建立空间直角坐标系,利用空间向量亦可求解.试题解析:(Ⅰ)证明:取PD中点Q,连接NQ,CQ,因为点M,N分别为BC,PA的中点,所以NQ//AD//CM,四边形CQNM为平行四边形,则MN//CQ又MN⊆平面PCD,CQ⊆所以MN//平面PCD.(Ⅱ)解法1:连接PM,因为AB=AC=1,点M分别为BC的中点,则AM⊥BC又PA⊥平面ABCD,则PM⊥BC所以∠PMA即为二面角P-BC-A的平面角又AM∩PM=M,所以BC⊥平面PAM,则平面PBC⊥平面PAM过点A在平面PAM内作AH⊥PM于H,则AH⊥平面PBC.连接CH,于是∠ACH就是直线AC与平面PBC所成的角,即∠ACH=α.在Rt△AHM中,AH=2在Rt△AHC中,CH=sinα,∵0<α<π∴0<sinθ<1又0<φ<π2,即二面角P-BC-A取值范围为(0,解法2:连接PM,因为AB=AC=1,点M分别为BC的中点,则AM⊥BC又PA⊥平面ABCD,则PM⊥BC所以∠PMA即为二面角P-BC-A的平面角,设为θ以所在的直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系,则A(0,0于是,PM=(12,1设平面PBC的一个法向量为n=(x,则由n·BC得-x+y=0可取n=(1,1,于是sinα=|∵0<α<π∴0<sinθ<1又0<φ<π2,即二面角P-BC-A取值范围为(0,考点:1、空间直线与平面的位置关系;2、二面角.18、(I)证明见解析;(Ⅱ).【解析】
(I)连接,交于,则为的中点,由中位线的性质得出,再利用直线与平面平行的判定定理可证明平面;(Ⅱ)以,,为,,轴建立空间直角坐标系,并设,计算出平面的一个法向量,记直线平面所成角为,于是得出可得出直线与平面所成角的正弦值。【详解】(Ⅰ)证明:连接,交于,所以为的中点,又因为为的中点,所以,因为在面内,不在面内,所以面;(Ⅱ)以,,为,,轴建立空间直角坐标系(不妨设).所以,,,,设面的法向量为,则,解得.因为,记直线平面所成角为.所以.【点睛】本题考查直线与平面平行的证明,考查直线与平面所成角的计算,常见的有定义法和空间向量法,可根据题中的条件来选择,考查逻辑推理能力与运算求解能力,属于中等题。19、(1)(2)【解析】
(1)不妨设点是第一象限的点,由四边形的周长求出,面积求出与关系,再由点在直线上,得到与关系,代入椭圆方程,求解即可;(2)先求出直线斜率不存在时,原点到的中垂线的距离,斜率为0时与椭圆只有一个交点,直线斜率存在时,设其方程为,利用与圆相切,求出关系,直线方程与椭圆方程联立,求出中点坐标,得到的中垂线方程,进而求出原点到中垂线的距离表达式,结合关系,即可求出结论.【详解】(1)不妨设点是第一象限的点,因为四边形的周长为12,所以,,因为,所以,得,点为过原点且斜率为1的直线与椭圆的交点,即点在直线上,点在椭圆上,所以,即,解得或(舍),所以椭圆的标准方程为.(2)当直线的斜率不存在时,直线为,线段的中垂线为轴,原点到轴的距离为0.当直线的斜率存在时,设斜率为,依题意可设,因为直线与圆相切,所以,设,,联立,得,由,得,又因为,所以,所以,所以的中点坐标为,所以的中垂线方程为,化简,得,原点到直线中垂线的距离,当且仅当,即时,等号成立,所以原点到的中垂线的最大距离为.【点睛】本题考查椭圆的标准方程、直线与椭圆的位置关系、点到直线的距离,利用基本不等式求最值,考查逻辑推理、数学计算能力,属于中档题.20、(1);(2)甲获得元,乙获得元.【解析】
(1)甲赢得比赛包括三种情况:前局甲全胜;前三局甲胜局输局,第局胜;前局甲胜局输局,第局胜.这三个事件互斥,然后利用独立重复试验的概率和互斥事件的概率加法公式可得出计算所求事件的概率;(2)设甲获得奖金为随机变量,可得出随机变量的可能取值为、,在第一局比赛甲获胜后,计算出甲获胜的概率,并列出随机变量的分布列,并计算出随机变量的数学期望的值,即可得出甲分得奖金数为元,乙分得奖金元.【详解】(1)甲赢得比赛包括三种情况:前局甲全胜;前三局甲胜局输局,第局胜;前局甲胜局输局,第局胜.记甲赢得比赛为事件,则;(2)如果比赛正常进行,则甲赢得比赛有三种情况:第、局全胜;第、局胜局输局,第局胜;第、、局胜场输局,第局胜,此时甲赢得比赛的概率为.则甲获得奖金的分布列为0则甲获得奖金的期望为元,最恰当的奖金分配为:甲获得元,乙获得元.【点睛】本题考查利用独立重复试验和互斥事件的概率公式计算出事件的概率,同时也考查了随机变量分布列及其数学期望,考查运算求解能力,属于中等题.21、(Ⅰ)(Ⅱ)直线恒过定点【解析】试题分析:(Ⅰ)设椭圆C的半焦距为c.求出b利用离心率求出a,即可求解椭圆C的方程;(Ⅱ)证法一:直线PQ的斜率存在,设其方程为y=kx+m.将直线PQ的方程代入消去y,设P,Q,利用韦达定理,通过BP⊥BQ,化简求出,求出m,即可得到直线PQ恒过的定点.证法二:直线BP,BQ的斜率均存在,设直线BP的方程为y=kx+1,将直线BP的方程代入,消去y,解得x,设P,转化求出P的坐标,求出Q坐标,求出直线PQ的方程利用直线系方程求出定点坐标试题解析:(Ⅰ)解:设椭圆的半焦距为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年沪教版选择性必修1生物上册阶段测试试卷
- 创新的小学生字词教学案例分享
- 从食材到菜品家庭菜谱设计的全解析
- 公共设施与社区服务类服饰品牌的联名项目
- 2025中国航材集团总部岗位招聘2人高频重点提升(共500题)附带答案详解
- 2025中国电信股份限公司湾沚分公司招聘10人高频重点提升(共500题)附带答案详解
- 2025中国城市规划设计研究院公开招聘60名高校毕业生高频重点提升(共500题)附带答案详解
- 2025下半年黑龙江省哈尔滨理工大学招聘专职辅导员心理健康教师26人历年高频重点提升(共500题)附带答案详解
- 2025下半年江苏盐城市水利局部分事业单位招聘15人历年高频重点提升(共500题)附带答案详解
- 2025下半年广东江门市开平市招聘事业单位职员拟聘历年高频重点提升(共500题)附带答案详解
- 历史上的嘉兴古园林
- 员工个人信息登记表(模板)
- 房地产法案例答案五版更新资料讲解
- 村委会实虚线信纸.
- 2022年度设备部安全生产工作计划5篇
- GB∕T 39757-2021 建筑施工机械与设备 混凝土泵和泵车安全使用规程
- 英国学派多元主义与社会连带主义论争
- 电梯公司安全生产管理制度汇编.doc
- 儿童保健档案表.doc
- 新产品开发流程表
- 保命未来经0001
评论
0/150
提交评论