版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
./2019年XX市近五届中考数学几何压轴题〔23题汇编及答案〔本大题一般2~3小问,共11分上传校勘:柯老师[2014/23]在矩形ABCD中,=a,点G,H分别在边AB,DC上,且HA=HG,点E为AB边上的一个动点,连接HE,把△AHE沿直线HE翻折得到△FHE.〔1如图1,当DH=DA时,①填空:∠HGA=度;②若EF∥HG,求∠AHE的度数,并求此时a的最小值;〔2如图3,∠AEH=60°,EG=2BG,连接FG,交边FG,交边DC于点P,且FG⊥AB,G为垂足,求a的值.[2015/23]如图四边形ABCD为菱形,对角线AC,BD相交于点E,F是边BA延长线上一点,连接EF,以EF为直径作⊙O,交边DC于D,G两点,AD分别与EF,GF交于I,H两点。<1>求∠FDE的度数;<2>试判断四边形FACD的形状,并证明你的结论;<3>当G为线段DC的中点时,①求证:FD=FI;②设AC=2m,BD=2n,求⊙O的面积与菱形ABCD的面积之比。[2016/23]在△ABC中,AB=6,AC=8,BC=10.D是△ABC内部或BC边上的一个动点〔与B,C不重合.以D为顶点作△DEF,使△DEF∽△ABC〔相似比k>1,EF∥BC.〔1求∠D的度数;〔2若两三角形重叠部分的形状始终是四边形AGDH,①②〔〔第23题图1〔第23题图2供参考用〔第23题图3供参考用图1图2[2017/23]23.正方形的边长为1,点是边上的一个动点〔与不重合>,以为顶点在所在直线的上方作. <1>当经过点时,①请直接填空:〔可能,不可能过点;〔图1仅供分析②如图2,在上截取,过点作垂直于直线,垂足为点,册于,求证:四边形为正方形.〔2当不过点时,设交边于,且.在上存在点,过点作垂直于直线,垂足为点,使得,连接,求四边形的最大面积.[2018/23]23.在矩形中,,是边上一点,把沿直线折叠,顶点的对应点是点,过点作,垂足为且在上,交于点.<1>如图1,若点是的中点,求证:;<2>如图2,①求证:;②当,且时,求的值;③当时,求的值.图1图2图2备用图参考答案:[2014/23]解:〔1①∵四边形ABCD是矩形,∴∠ADH=90°,∵DH=DA,∴∠DAH=∠DHA=45°,∴∠HAE=45°,∵HA=HG,∴∠HAE=∠HGA=45°;故答案为:45°;②分两种情况讨论:第一种情况:∵∠HAG=∠HGA=45°;∴∠AHG=90°,由折叠可知:∠HAE=∠F=45°,∠AHE=∠FHE,∵EF∥HG,∴∠FHG=∠F=45°,∴∠AHF=∠AHG﹣∠FHG=45°,即∠AHE+∠FHE=45°,∴∠AHE=22.5°,此时,当B与G重合时,a的值最小,最小值是2;第二种情况:∵EF∥HG,∴∠HGA=∠FEA=45°,即∠AEH+∠FEH=45°,由折叠可知:∠AEH=∠FEH,∴∠AEH=∠FEH=22.5°,∵EF∥HG,∴∠GHE=∠FEH=22.5°,∴∠AHE=90°+22.5°=112.5°,此时,当B与E重合时,a的值最小,设DH=DA=x,则AH=CH=x,在Rt△AHG中,∠AHG=90°,由勾股定理得:AG=AH=2x,∵∠AEH=∠FEH,∠GHE=∠FEH,∴∠AEH=∠GHE,∴GH=GE=x,∴AB=AE=2x+x,∴a的最小值是=2+;〔2如图:过点H作HQ⊥AB于Q,则∠AQH=∠GOH=90°,在矩形ABCD中,∠D=∠DAQ=90°,∴∠D=∠DAQ=∠AQH=90°,∴四边形DAQH为矩形,∴AD=HQ,设AD=x,GB=y,则HQ=x,EG=2y,由折叠可知:∠AEH=∠FEH=60°,∴∠FEG=60°,在Rt△EFG中,EG=EF×cos60°,EF=4y,在Rt△HQE中,EQ==x,∴QG=QE+EG=x+2y,∵HA=HG,HQ⊥AB,∴AQ=GQ=x+2y,∴AE=AQ+QE=x+2y,由折叠可知:AE=EF,∴x+2y=4y,∴y=x,∴AB=2AQ+GB=2〔x+2y+y=x,∴a==.[2015/23]解:〔1∵EF是⊙O的直径,∴∠FDE=90°;〔2四边形FACD是平行四边形.理由如下:∵四边形ABCD是菱形,∴AB∥CD,AC⊥BD,∴∠AEB=90°.又∵∠FDE=90°,∴∠AEB=∠FDE,∴AC∥DF,∴四边形FACD是平行四边形;〔3①连接GE,如图.∵四边形ABCD是菱形,∴点E为AC中点.∵G为线段DC的中点,∴GE∥DA,∴∠FHI=∠FGE.∵EF是⊙O的直径,∴∠FGE=90°,∴∠FHI=90°.∵∠DEC=∠AEB=90°,G为线段DC的中点,∴DG=GE,∴=,∴∠1=∠2.∵∠1+∠3=90°,∠2+∠4=90°,∴∠3=∠4,∴FD=FI;②∵AC∥DF,∴∠3=∠6.∵∠4=∠5,∠3=∠4,∴∠5=∠6,∴EI=EA.∵四边形ABCD是菱形,四边形FACD是平行四边形,∴DE=BD=n,AE=AC=m,FD=AC=2m,∴EF=FI+IE=FD+AE=3m.在Rt△EDF中,根据勾股定理可得:n2+〔2m2=〔3m2,即n=m,∴S⊙O=π〔2=πm2,S菱形ABCD=•2m•2n=2mn=2m2,∴S⊙O:S菱形ABCD=.[2016/23]解:〔1∵AB2+AC2=100=BC2,∴∠BAC=90°,∵△DEF∽△ABC,∴∠D=∠BAC=90°,〔2①四边形AGDH为正方形,理由:如图1,延长ED交BC于M,延长FD交BC于N,∵△DEF∽△ABC,∴∠B=∠C,∵EF∥BC,∴∠E=∠EMC,∴∠B=∠EMC,∴AB∥DE,同理:DF∥AC,∴四边形AGDH为平行四边形,∵∠D=90°,∴四边形AGDH为矩形,∵GH⊥AD,∴四边形AGDH为正方形;②当点D在△ABC内部时,四边形AGDH的面积不可能最大,理由:如图2,点D在内部时〔N在△ABC内部或BC边上,延长GD至N,过N作NM⊥AC于M,∴矩形GNMA面积大于矩形AGDH,∴点D在△ABC内部时,四边形AGDH的面积不可能最大,只有点D在BC边上时,面积才有可能最大,如图3,点D在BC上,∵DG∥AC,∴△BGD∽△BAC,∴,∴,∴,∴AH=8﹣GA,S矩形AGDH=AG×AH=AG×〔8﹣AG=﹣AG2+8AG,当AG=﹣=3时,S矩形AGDH最大,此时,DG=AH=4,即:当AG=3,AH=4时,S矩形AGDH最大,在Rt△BGD中,BD=5,∴DC=BC﹣BD=5,即:点D为BC的中点,∵AD=BC=5,∴PA=AD=5,延长PA,∵EF∥BC,QP⊥EF,∴QP⊥BC,∴PQ是EF,BC之间的距离,∴D是EF的距离为PQ的长,在△ABC中,AB×AC=BC×AQ∴AQ=4.8∵△DEF∽△ABC,∴k===.[2017/23]解:〔1①若ON过点D,则OA>AB,OD>CD,∴OA2>AD2,OD2>AD2,∴OA2+OD2>2AD2≠AD2,∴∠AOD≠90°,这与∠MON=90°矛盾,∴ON不可能过D点,故答案为:不可能;②∵EH⊥CD,EF⊥BC,∴∠EHC=∠EFC=90°,且∠HCF=90°,∴四边形EFCH为矩形,∵∠MON=90°,∴∠EOF=90°﹣∠AOB,在正方形ABCD中,∠BAO=90°﹣∠AOB,∴∠EOF=∠BAO,在△OFE和△ABO中∴△OFE≌△ABO〔AAS,∴EF=OB,OF=AB,又OF=CF+OC=AB=BC=BO+OC=EF+OC,∴CF=EF,∴四边形EFCH为正方形;〔2∵∠POK=∠OGB,∠PKO=∠OBG,∴△PKO∽△OBG,∵S△PKO=4S△OBG,∴=〔2=4,∴OP=2,∴S△POG=OG•OP=×1×2=1,设OB=a,BG=b,则a2+b2=OG2=1,∴b=,∴S△OBG=ab=a==,∴当a2=时,△OBG有最大值,此时S△PKO=4S△OBG=1,∴四
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 幼儿园安全教育工作总结
- 慢阻肺治疗培训
- 2025年湖北货运从业资格证模拟考试0题
- 2025年江苏货运从业资格证考试题及答案详解
- 2025年湘西货运从业资格证考试技巧
- 2024年黑龙江哈尔滨市中考数学真题卷及答案解析
- 快递服务租赁合同
- 机场专用停车场出租协议
- 城市照明系统改造需求书
- 签约责任与义务明确
- 2024年全国统一高考英语试卷(新课标Ⅰ卷)含答案
- 2024年认证行业法律法规及认证基础知识 CCAA年度确认 试题与答案
- 花卉学智慧树知到期末考试答案章节答案2024年浙江农林大学暨阳学院
- 22秋中传媒《传播学概论》作业考核答卷
- 婚礼流程准备安排表需要彩排的
- 闪光焊及缺陷
- 泵站质量检查表
- 非连续性文本在部编本初中语文教材中的运用
- 分宜县土地利用总体规划
- 新版atstudy系统测试计划
- 基于西门子PLC的四层电梯控制系统设计
评论
0/150
提交评论