浙江省北斗星盟高三下学期5月联考数学试题_第1页
浙江省北斗星盟高三下学期5月联考数学试题_第2页
浙江省北斗星盟高三下学期5月联考数学试题_第3页
浙江省北斗星盟高三下学期5月联考数学试题_第4页
浙江省北斗星盟高三下学期5月联考数学试题_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高三数学学科试题考生须知:1.本卷满分150分,考试时间120分钟;2.答题前,在答题卷指定区域填写班级、学号和姓名;考场号、座位号写在指定位置;3.所有答案必须写在答题纸上,写在试卷上无效;4.考试结束后,只需上交答题纸.一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合,则()A. B.C. D.【答案】B【解析】【分析】解不等式求集合A、由幂函数的性质得集合B,再求并集即可.【详解】由题意可得,易知在定义域单调递增,故,故.故选:B2.若,则()A. B. C.3 D.2【答案】A【解析】【分析】利用复数的除法运算及求模公式计算即可.【详解】由,故选:A3.已知单位向量满足,其中,则在上的投影向量是()A. B. C. D.【答案】D【解析】【分析】根据投影向量的计算公式求值即可.【详解】因为单位向量满足,所以,由投影向量计算公式可知在上的投影向量是,即故,而,故.故选:D4.《九章算术・商功》刘徽注:“邪解立方得二堑堵,邪解堑堵,其一为阳马,其一为鳖臑,”阳马,是底面为长方形或正方形,有一条侧棱垂直底面的四棱锥.在底面,且底面为正方形的阳马中,若,则()A.直线与直线所成角为B.异面直线与直线的距离为C.四棱锥的体积为1D.直线与底面所成角的余弦值为【答案】B【解析】【分析】把阳马补形成正方体,求出异面直线夹角判断A;求出线面距离判断B;求出四棱锥体积判断C;求出线面角的余弦判断D作答.【详解】由底面,底面为正方形,而,则阳马可补形成正方体,如图,对于A,由底面,底面,则,因此直线与所成角为,A错误;对于B,连接,平面,平面,则有平面,从而异面直线与直线的距离等于直线与平面的距离,取的中点,连接,则,而平面,平面,于是,又平面,因此平面,所以直线与平面距离为,B正确;对于C,四棱锥的体积,C错误;对于D,连接,则是直线与底面所成的角,而,因此,D错误.故选:B5.临近高考,同学们写祝福卡片许美好愿望.某寝室的5位同学每人写一张祝福卡片放在一起,打乱后每人从中随机抽取一张卡片,已知有同学拿到自己写的祝福卡,则至少有3位同学摸到自己写的祝福卡片的概率为()A. B. C. D.【答案】C【解析】【分析】根据给定条件,利用缩小空间的方法求出条件概率作答.【详解】恰有1位同学拿到自己写的祝福卡有种,恰有2位同学拿到自己写的祝福卡有种,恰有3位同学拿到自己写的祝福卡有种,恰有4位(5位)同学拿到自己写的祝福卡有1种,因此有同学拿到自己写的祝福卡的事件含有的基本事件数为个,至少有3位同学摸到自己写的祝福卡的事件有个基本事件,所以至少有3位同学摸到自己写祝福卡片的概率.故选:C.6.定义设函数,可以使在上单调递减的的值为()A. B. C. D.【答案】C【解析】【分析】分段写出函数解析式,并确定单调递减区间,再借助集合的包含关系求解作答.【详解】依题意,,函数的递减区间是,,,于是或,,即,,解得,由,得,无解;或,,解得,由,得,则或,当时,,当时,,选项C满足,ABD不满足.故选:C7.已知点是双曲线右支上一点,分别是的左、右焦点,若的角平分线与直线交于点,且,则的离心率为()A.2 B. C.3 D.【答案】B【解析】【分析】根据给定条件,结合双曲线定义证明点是的内心,再借助三角形面积公式求解作答.【详解】作的平分线交的平分线于,过作轴,垂足分别为,如图,则点为的内心,有,设,,则,于是直线与直线重合,而的角平分线与直线交于点,即与重合,则点为的内心,因此令,由,得,因此,即有,即,所以双曲线的离心率为.故选:B8.已知,且满足,则()A. B.C. D.【答案】B【解析】【分析】变形给定的等式,构造函数,利用导数探讨单调性,借助单调性比较大小作答.【详解】由,得,由,得,由,得,令函数,显然,求导得,当时,,单调递减,当时,单调递增,于是,即有,而,所以.故选:B【点睛】思路点睛:某些数或式大小关系问题,看似与函数的单调性无关,细心挖掘问题的内在联系,抓住其本质,构造函数,分析并运用函数的单调性解题,它能起到化难为易、化繁为简的作用.二、多项选择题:本大题共4个小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,选对但不全的得2分,有选错的得0分.9.下列说法正确的是()A.样本数据的上四分位数为B.若随机变量服从两点分布,若,则C.若随机变量服从正态分布,且是偶函数,则D.若两个具有线性相关关系的变量的相关性越强,则样本相关系数的值越接近于1【答案】AC【解析】【分析】求出上四分位数判断A;求出两点分布的方差判断B;利用正态分布的对称性求出u判断C;利用相关系数与相关性强弱的关系判断D作答.【详解】对于A,样本数据,由,得上四分位数为,A正确;对于B,,B错误;对于C,由是偶函数,得,又,因此,C正确;对于D,两个具有线性相关关系的变量的相关性越强,则样本相关系数的绝对值越接近于1,D错误.故选:AC10.直三棱桂中,为棱上的动点,为中点,则()A.B.三棱锥的体积为定值C.四面体的外接球表面积为D.点的轨迹长度为【答案】ABD【解析】【分析】由题意补直三棱柱为正方体,结合正方体的特征可判定A,利用等体积法转化可判断B,利用正方体的外接球及球的表面积公式可判断C,利用三角形中位线判断D即可.【详解】由题意可知:直三棱柱为正方体ABCD-A1B1C1D1的一半,如图所示.对于A,连接AB1,A1B,结合正方体的特征,易知BE⊥AB1,AB1⊥A1B,故AB1⊥面A1BE,面A1BE,则,即A正确;对于B,由题意可知F到上下底面的距离均为,故是定值,即B正确;对于C,四面体的外接球即正方体的外接球,故其直径为,所以其表面积为,即C错误;对于D,连接A1C,取其中点O,连接OF,易知OF为的中位线,故E从B运动到C的过程中F的运动轨迹长度为BC一半,即D正确.综上ABD三项正确.故选:ABD11.抛物线的准线方程为,过焦点的直线交抛物线于,两点,则()A.的方程为B.的最小值为C.过点且与抛物线仅有一个公共点的直线有且仅有2条D.过点分别作的切线,交于点,则直线的斜率满足【答案】BD【解析】【分析】求出抛物线方程判断A;设出直线的方程并与抛物线方程联立,结合抛物线定义及均值不等式计算判断B;设出过点M的直线方程,与抛物线方程联立求解判断C;求导并结合选项B的信息求解判断D作答.【详解】对于A;依题意,,解得,的方程为,A错误;对于B,由选项A知,,设直线的方程为,由消去y得,设,则有,,当且仅当时取等号,B正确;对于C,过点且与抛物线仅有一个公共点的直线不垂直于y轴,设此直线方程为,由消去y得:,当时,,直线与抛物线仅只一个交点,当时,,解得,即过点且与抛物线相切的直线有2条,所以过点且与抛物线仅有一个公共点的直线有3条,C错误;对于D,由求导得,由选项B知,,,,由两式相减得:,即,则,于是,,即点,所以,D正确.故选:BD12.已知,则()A.对于任意的实数,存在,使得与有互相平行的切线B.对于给定的实数,存在,使得成立C.在上的最小值为0,则的最大值为D.存在,使得对于任意恒成立【答案】ABC【解析】【分析】对于A,对两函数求导,再求出导函数的值域,由两值域的关系分析判断,对于B,由可得,从而可判断,对于C,令,再由可得,由题意设为的极小值点,然后列方程表示出,从而可用表示,再构造函数,利用导数可证得结论,对于D,根据函数值的变化情况分析判断.【详解】对于A,,当时,,当时,,综上,,所以对于任意的实数,存在,使与有交集,所以对于任意的实数,存在,使得与有互相平行的切线,所以A正确,对于B,由于给定的实数,当给定时,则为定值,由,得,,所以存在使上式成立,所以B正确,对于C,令,而,由题意可知,当时,恒成立,所以,所以,即,若在上递增,因为在上的最小值为0,所以,得,所以,则在上恒成立,即在上恒成立,令,则,所以在上单调递增,所以,所以,所以,若在上不单调,因为在上的最小值为0,所以设为的极小值点,则,解得,所以令,则由,得,或,解得,或(舍去),或(舍去),或,当时,,当时,,所以在上递增,在上递减,所以,综上,所以C正确,对于D,,当时,,所以D错误,故选:ABC【点睛】关键点点睛:此题考导数的综合应用,考查导数的几何意义,考查利用导数求函数的最值,对于选项C解题的关键是由题意设为的极小值点,则,求出,则可表示出再构造函数,利用导数可得结果,考查数学转化思想和计算能力,属于难题.三、填空题:本大题共4小题,每小题5分,共20分.13.已知的展开式中常数项为120,则__________.【答案】【解析】【分析】根据二项展开式的通项即可得到关于的方程,解出即可.【详解】的展开式通项为,的展开式中的常数项为,解得.故答案为:.14.已知圆和圆,则过点且与都相切的直线方程为__________.(写出一条即可)【答案】或(写出一条即可)【解析】【分析】由直线与圆的位置关系通过几何法计算即可.【详解】若过M的切线斜率不存在,即为,此时显然与两圆都相切;若过M的切线斜率存在,不妨设为,则到的距离分别为,即.综上过M与两圆都相切的直线为:或故答案为:或(写出一个即可)15.已知等差数列的公差为,前项和记为,满足,若数列为单调递增数列,则公差的取值范围为__________.【答案】【解析】【分析】根据给定条件,确定恒成立,再分析判断,结合已知等式求解作答.【详解】因为数列为单调递增数列,则当时,,而等差数列的公差,若,由知,数列单调递减,存在正整数,当时,,与数列为单调递增数列矛盾,因此,由,得,即,解得,则,所以公差的取值范围为.故答案为:16.若函数与函数的图象恰有三个不同的交点,其中交点的横坐标成等差数列,则的取值范围为__________.【答案】【解析】【分析】把两个函数图象有三个交点转化为三次方程有三个根的问题,设出三个根,利用恒等式建立关系并求解作答.【详解】依题意,方程,即有三个不等实根,设两个函数图象的三个交点的横坐标,即方程的三个根为,于是,整理得,因此,则,即有,解得或,所以的取值范围是..故答案:【点睛】思路点睛:涉及给定两个函数图象交点横坐标问题,可以等价转化为方程实根问题,再结合方程思想求解即可.四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.在公差不为零的等差数列中,,且成等比数列,数列的前项和满足.(1)求数列和的通项公式;(2)设,数列的前项和,若不等式对任意恒成立,求实数的取值范围.【答案】(1),(2)【解析】【分析】(1)设等差数列的公差为,根据等比中项的性质得到方程,求出,即可求出的通项公式,再根据,作差得到数列是首项为,公比为的等比数列,即可得解;(2)由(1)可得,利用分组求和法求出,令,利用作差法判断的单调性,即可求出,从而得到关于的对数不等式,解得即可.【小问1详解】设等差数列的公差为,且成等比数列,,即,解得或(舍去),所以.数列的前项和,当时,,当时,,,即数列是首项为,公比为的等比数列,.【小问2详解】由(1)可得,.令,,单调递增,.,,.18.在现实生活中,每个人都有一定的心理压力,压力随着现代生活节奏的加快、社会竞争日趋激烈等逐渐增大.某市研究组为了解该市市民压力的情况,随机邀请本市200名市民进行心理压力测试评估,得到一个压力分值,绘制如下样本数据频率分布直方图.(1)求的值,并估计该市市民压力分值位于区间的概率;(2)估计该市市民压力分值的平均值;(同一组数据用该区间的中点值作代表)(3)若市民的压力分值不低于70,则称为“高压市民”.研究组对“高压市民”按年龄段进行研究,发现年龄在30岁到50岁的“高压市民”有35人,年龄在30岁到50岁的“非高压市民”有25人,剩余“高压市民”的年龄分散在其它年龄段.为研究方便,记年龄在30岁到50岁为年龄段,其余为年龄段.根据所给数据,完成下面的列联表,并判断是否有的把握认为该市“高压市民”与其年龄在30岁到50岁有关.压力高压市民非高压市民年龄段A年龄段B附:,其中.【答案】(1),;(2)58;(3)列联表见解析,有的把握认为该市“高压市民”与其年龄在30岁到50岁有关.【解析】【分析】(1)根据给定的频率分布直方图,利用各小矩形面积和为1求出a,再由频率估计概率作答.(2)利用频率分布直方图估计压力分值的平均值作答.(3)由(1)及已知完善列联表,求出的观测值,与临界值比对作答.【小问1详解】依题意,,解得,记“该市市民的压力分值在区间”为事件,则.【小问2详解】由频率分布直方图及(1)知,压力分值在各分组区间内的频率依次为:,所以.【小问3详解】由(1)知,高压市民有人,年龄段的人数有35人,年龄段的人数为35人,所以列联表为:压力高压市民非高压市民合计年龄段A352560年龄段B3510514070130200零假设:该市高压市民与其年龄在在30岁到50岁无关,,所以有的把握认为该市“高压市民”与其年龄在30岁到50岁有关.19.已知四棱锥中,底面为平行四边形,,平面平面.(1)若为的中点,证明:平面;(2)若,求平面与平面所夹角的余弦值.【答案】(1)证明见解析;(2)【解析】【分析】(1)利用等腰三角形的性质及线面垂直的判定推理作答.(2)根据给定条件,作出平面与平面所成二面角的平面角,再结合对应三角形计算作答.【小问1详解】在四棱锥中,为的中点,又,则,而,因此平面,所以平面.【小问2详解】在平面内过点作交直线于,连接,如图,因为平面平面,平面平面,则平面,而平面,则有,又,平面,于是平面,平面,则,有,得,平面,平面,则平面,平面与平面的交线为,因此,有,从而为平面与平面所成二面角的平面角,显然,则,所以平面与平面的夹角的余弦值为.20.记锐角内角的对边分别为.已知.(1)求;(2)若,求的取值范围.【答案】(1)(2)【解析】【分析】(1)利用三角形内角和定理,两角和的余弦公式的得到,进而求解;(2)利用正弦定理和三角函数的性质即可求解.【小问1详解】由,故,故,,故,因是锐角三角形,故,.故,故,所以.【小问2详解】由正弦定理可知,故,..由是锐角三角形,可知,故,故.21.已知椭圆的离心率为,抛物线的准线与相交,所得弦长为.(1)求的方程;(2)若在上,且,分别以为切点,作的切线相交于点,点恰好在上,直线分别交轴于两点.求四边形面积的取值范围.【答案】(1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论