2022年河北省沧州市高川乡中学高二数学理联考试题含解析_第1页
2022年河北省沧州市高川乡中学高二数学理联考试题含解析_第2页
2022年河北省沧州市高川乡中学高二数学理联考试题含解析_第3页
2022年河北省沧州市高川乡中学高二数学理联考试题含解析_第4页
2022年河北省沧州市高川乡中学高二数学理联考试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022年河北省沧州市高川乡中学高二数学理联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若双曲线

的离心率为2,则a等于()参考答案:A略2.若椭圆上一点P到焦点F1的距离为6,则点P到另一个焦点F2的距离为()A.2 B.4 C.6 D.8参考答案:B【考点】椭圆的简单性质.【分析】根据椭圆的方程可得椭圆的椭圆的焦点在y轴上,长轴2a=10.再根据椭圆的定义得|PF1|+|PF2|=2a=10,由此结合|PF1|=6加以计算,可得|PF2|=4,从而得到答案.【解答】解:∵椭圆的方程为,∴该椭圆的焦点在y轴上,a2=25且b2=16,可得a=5、b=4.根据椭圆的定义,得|PF1|+|PF2|=2a=10∵椭圆上一点P到焦点F1的距离|PF1|=6,∴点P到另一个焦点F2的距离|PF2|=2a﹣|PF1|=10﹣6=4.故选:B3.已知点M(,0),椭圆+y2=1与直线y=k(x+)交于点A、B,则△ABM的周长为(

)A.4

B.8

C.12

D.16参考答案:B4.设集合A={x|2x﹣2<1},B={x|1﹣x≥0},则A∩B等于()A.{x|0<x≤1} B.{x|1≤x<2} C.{x|x≤1} D.{x|0<x<1}参考答案:C【考点】交集及其运算.【分析】找出集合A和B中x范围的公共部分,即可确定出两集合的交集.【解答】解:∵A={x|2x﹣2<1}={x|x<2},B={x|1﹣x≥0}={x|x≤1}∴A∩B={x|x≤1}故选:C5.执行如图所示的程序框图,若输入,输出的,则空白判断框内应填的条件为A.B.C.D.参考答案:B6.某学校举办科技节活动,有甲、乙、丙、丁四个团队参加“智能机器人”项目比赛,该项目只设置一个一等奖.在评奖揭晓前,小张、小王、小李、小赵四位同学对这四个参赛团队获奖结果预测如下:小张说:“甲或乙团队获得一等奖”;小王说:“丁团队获得一等奖”;小李说:“乙、丙两个团队均未获得一等奖”;小赵说:“甲团队获得一等奖”.若这四位同学中有且只有两位预测结果是对的,则获得一等奖的团队是()A.甲 B.乙 C.丙 D.丁参考答案:D1.若甲获得一等奖,则小张、小李、小赵的预测都正确,与题意不符;2.若乙获得一等奖,则只有小张的预测正确,与题意不符;3.若丙获得一等奖,则四人的预测都错误,与题意不符;4.若丁获得一等奖,则小王、小李的预测正确,小张、小赵的预测错误,符合题意,故选D.【思路点睛】本题主要考查演绎推理的定义与应用以及反证法的应用,属于中档题.本题中,若甲获得一等奖,则小张、小李、小赵的预测都正确,与题意不符;若乙获得一等奖,则只有小张的预测正确,与题意不符;若丙获得一等奖,则四人的预测都错误,与题意不符;若丁获得一等奖,则小王、小李的预测正确,小张、小赵的预测错误,符合题意.7.根据某市环境保护局公布2007-2012这六年每年的空气质量优良的天数,绘制折线图如图.根据图中信息可知,这六年的每年空气质量优良天数的中位数是(

)A. B.

C.

D.参考答案:C略8.椭圆的左右焦点分别为F1,F2,点P在椭圆上,轴,且△PF1F2是等腰直角三角形,则该椭圆的离心率为(

)A、

B、

C、

D、参考答案:D9.已知椭圆和圆,当实数在闭区间[-3,3]内从小到大连续变化时,椭圆和圆公共点个数的变化规律是().A.1,2,1,0,1,2,1 B.2,1,0,1,2C.1,2,0,2,1 D.1,2,3,4,2,0,2,4,3,2,1参考答案:A解:椭圆的顶点坐标为,,,,圆,表示以为圆心,1为半径的圆,当时,椭圆与圆只有一个焦点,当时,圆向右平移,与椭圆有两个交点,当时,圆与椭圆只有1个交点,当时,圆椭圆在内部,此时椭圆与圆无公共点,∴当在闭区间从小到大连续变化时,椭圆和圆公共点个数的变化规律是1,2,1,0,1,2,1.故选.10.右边的程序语句输出的结果为

A.17

B.19

C.21

D.23参考答案:A略二、填空题:本大题共7小题,每小题4分,共28分11.点A,B,C,D在同一个球的球面上,AB=BC=,,若四面体ABCD体积的最大值为3,则这个球的表面积为___________.参考答案:16π

如图所示,O为球的球心,由AB=BC=,,即所在的圆面的圆心为AC的中点,故,,当D为OO1的延长线与球面的交点时,D到平面ABC的距离最大,四面体ABCD的体积最大.连接OA,设球的半径为R,则,此时解得,故这个球的表面积为.12.函数的零点的个数是_______.参考答案:13.图中所示的是一个算法的流程图,已知,输出的,则的值是____________。参考答案:

解析:14.已知一个正方体的所有顶点在一个球面上,若球的体积为,则正方体的棱长为________.参考答案:15.抛物线y2=2px(p>0)的准线恰好是双曲线﹣=1的一条准线,则该抛物线的焦点坐标是.参考答案:(,0)【考点】双曲线的简单性质.【专题】函数思想;综合法;圆锥曲线的定义、性质与方程.【分析】由已知可得双曲线的准线方程及其抛物线的准线方程即可得出p.【解答】解:抛物线y2=2px(p>0)的准线为x=﹣.由双曲线﹣=1,得a2=4,b2=5,c==3.取此双曲线的一条准线x=﹣=﹣=﹣,解得:p=,∴焦点坐标是(,0),故答案为:(,0).【点评】熟练掌握双曲线与抛物线的标准方程及其性质是解题的关键.16.若函数,则不等式的解集为______________.参考答案:【分析】分类讨论,分别求解不等式,即可求得不等式的解集,得到答案.【详解】由题意,当时,令,解得,当时,令,解得,所以不等式的解集为.【点睛】本题主要考查了分段函数的应用,以及指数函数的图象与性质的应用,着重考查了推理与运算能力,属于基础题.17.若椭圆的离心率为,则它的长半轴长为.参考答案:4【考点】椭圆的简单性质.【分析】由题意可知:m2+1>1,则椭圆的焦点在x轴上,椭圆的离心率e====,解得:m2=3,它的长半轴长2a=4.【解答】解:由题意可知:m2+1>1,则椭圆的焦点在x轴上,即a2=m2+1,b=1,则c=m2+1﹣1=m2,由椭圆的离心率e====,解得:m2=3,则a=2,它的长半轴长2a=4,故答案为:4.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.如图,直线l:y=x+b与抛物线C:x2=4y相切于点A.(Ⅰ)求实数b的值;(Ⅱ)求以点A为圆心,且与抛物线C的准线相切的圆的方程.参考答案:【考点】圆与圆锥曲线的综合.【专题】综合题.【分析】(I)由,得:x2﹣4x﹣4b=0,由直线l与抛物线C相切,知△=(﹣4)2﹣4×(﹣4b)=0,由此能求出实数b的值.(II)由b=﹣1,得x2﹣4x+4=0,解得x=2,代入抛物线方程x2=4y,得点A的坐标为(2,1),因为圆A与抛物线C的准线相切,所以圆A的半径r等于圆心A到抛物线的准线y=﹣1的距离,由此能求出圆A的方程.【解答】解:(I)由,消去y得:x2﹣4x﹣4b=0①,因为直线l与抛物线C相切,所以△=(﹣4)2﹣4×(﹣4b)=0,解得b=﹣1;(II)由(I)可知b=﹣1,把b=﹣1代入①得:x2﹣4x+4=0,解得x=2,代入抛物线方程x2=4y,得y=1,故点A的坐标为(2,1),因为圆A与抛物线C的准线相切,所以圆A的半径r等于圆心A到抛物线的准线y=﹣1的距离,即r=|1﹣(﹣1)|=2,所以圆A的方程为:(x﹣2)2+(y﹣1)2=4.【点评】本题考查圆锥曲线的性质和应用,解题时要认真审题,仔细解答,注意公式的合理运用.19.近年来,网上购物已经成为人们消费的一种习惯.假设某淘宝店的一种装饰品每月的销售量y(单位:千件)与销售价格x(单位:元/件)之间满足如下的关系式:为常数.已知销售价格为4元/件时,每月可售出21千件.(1)求实数a的值;(2)假设该淘宝店员工工资、办公等所有的成本折合为每件2元(只考虑销售出的装饰品件数),试确定销售价格x的值,使该店每月销售装饰品所获得的利润最大.(结果保留一位小数)参考答案:(1);(2)3.3.【分析】(1)将“销售价格为4元/件时,每月可售出21千件”带入关系式中即可得出结果;(2)首先可通过题意得出每月销售装饰品所获得的利润,然后通过化简并利用导数求得最大值,即可得出结果。【详解】(1)由题意可知,当销售价格为4元/件时,每月可售出21千件,所以,解得。(2)设利润为,则,,带入可得:,化简可得,函数的导函数,,当时,,函数单调递增;当时,,函数单调递减;当时,,函数取极大值,也是最大值,所以当,函数取最大值,即销售价格约为每件3.3元时,该店每月销售装饰品所获得的利润最大。【点睛】本题考查函数的相关性质,主要考查函数的实际应用以及利用导数求函数的最值,本题的关键在于能够通过题意得出题目所给的销售量、销售价格以及每月销售装饰品所获得的利润之间的关系,考查推理能力与计算能力,考查化归与转化思想,是中档题。20.某班主任对全班50名学生学习积极性和对待班级工作的态度进行了调查,统计数据如下表所示:

积极参加班级工作不太主动参加班级工作合计学习积极性高18725学习积极性一般61925合计242650(1)如果随机抽查这个班的一名学生,那么抽到积极参加班级工作的学生的概率是多少?抽到不太主动参加班级工作且学习积极性一般的学生的概率是多少?(2)试运用独立性检验的思想方法点拨:学生的学习积极性与对待班级工作的态度是否有关系?并说明理由.(参考下表)参考答案:【考点】独立性检验.【专题】综合题.【分析】(1)是一古典概型问题,把基本事件的总数与满足要求的个数找出来,代入古典概率的计算公式即可.(2)是独立性检验的应用,由题中的数据,计算出k2与临界值比较即可得出结论【解答】解:(1)积极参加班级工作的学生有24人,总人数为50人,概率为;不太主动参加班级工作且学习积极性一般的学生有19人,概率为.(2)k2==≈11.5,∵K2>6.635,∴有99%的把握

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论