版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
重庆经开礼嘉中学2022年高二数学文上学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若i为虚数单位,则(
)A. B. C. D.参考答案:B【分析】由题意结合复数的运算法则分子分母同时乘以i,然后整理计算即可求得最终结果.【详解】由复数的运算法则有:.本题选择B选项【点睛】本题主要考查复数的除法运算法则等知识,意在考查学生的转化能力和计算求解能力.2.下列有关命题的说法正确的是(
)A.若向量a、b满足a·b=0,则a=0或者b=0;B.“”是“”的必要不充分条件; C.命题“,使得”的否定是:“,均有”;D.命题“若”的逆否命题为真命题.参考答案:D3.设是定义在上的周期函数,周期为,对都有,且当时,,若在区间内关于的方程=0恰有3个不同的实根,则的取值范围是A.(1,2)
B.
C. D.参考答案:D4.(原创)湖面上漂着一个小球,湖水结冰后将球取出,冰面上留下了一个半径为6cm,深2cm的空穴,则该球表面积为(
)cm2.A.
B.
C.
D.参考答案:A5.给定函数的图象在下列图中,并且对任意,由关系式得到的数列满足,则该函数的图象是(
)参考答案:A6.过点M(1,2)的直线l将圆(x﹣2)2+y2=9分成两段弧,当其中的劣弧最短时,直线l的方程是(
)A.x=1 B.y=1 C.x﹣y+1=0 D.x﹣2y+3=0参考答案:D【考点】直线和圆的方程的应用;直线的一般式方程.【专题】计算题.【分析】由条件知M点在圆内,故当劣弧最短时,l应与圆心与M点的连线垂直,求出直线的斜率即可.【解答】解:由条件知M点在圆内,故当劣弧最短时,l应与圆心与M点的连线垂直,设圆心为O,则O(2,0),∴KOM==﹣2.∴直线l的斜率k=,∴l的方程为y﹣2=(x﹣1).即x﹣2y+3=0;故选D【点评】本题主要考查了直线的一般式方程,以及直线和圆的方程的应用,属于基础题.7.随机在圆内投一个点,则点刚好落在不等式组围成的区域内的概率是A.
B.
C.
D.参考答案:B8.线段在平面内,则直线与平面的位置关系是A、
B、
C、由线段的长短而定D、以上都不对参考答案:A略9.圆的圆心坐标和半径分别是(
) A.(0,2)2 B.(2,0)4 C.(-2,0)2 D.(2,0)2参考答案:B10.命题“”的否定是()A.
B.
C.
D.参考答案:C略二、填空题:本大题共7小题,每小题4分,共28分11.已知,且,那么直线不通过第__________象限.参考答案:三解:直线化为,∵,,设,.∴图像不经过第三象限.12.若直线x+(1+m)y+2+m=0与直线2mx+4y+6=0平行,则m的值为.参考答案:﹣2【考点】直线的一般式方程与直线的平行关系.【专题】计算题.【分析】由两直线ax+by+c=0与mx+ny+d=0平行?(m≠0、n≠0、d≠0)解得即可..【解答】解:∵直线x+(1+m)y+2+m=0与2mx+4y+6=0平行∴∴m=﹣2故答案为﹣2.【点评】本题考查两直线平行的条件,解题过程中要注意两直线重合的情况,属于基础题.13.若不等式组表示的平面区域是一个三角形,则a的取值范围为.参考答案:0<a≤1或a≥【考点】简单线性规划.【分析】画出前三个不等式构成的不等式组表示的平面区域,求出A,B的坐标,得到当直线x+y=a过A,B时的a值,再由题意可得a的取值范围.【解答】解:如图,联立,解得A().当x+y=a过B(1,0)时,a=1;当x+y=a过A()时,a=.∴若不等式组表示的平面区域是一个三角形,则0<a≤1或a≥.故答案为:0<a≤1或a≥.14.如果复数,则的模为
参考答案:215.命题“?x∈R,x2≤0”的否定为
.参考答案:?x∈R,x2>0【考点】命题的否定.【分析】直接利用特称命题的否定是全称命题写出结果即可.【解答】解:因为特称命题的否定是全称命题,所以,命题“?x∈R,x2≤0”的否定为:?x∈R,x2>0.故答案为:?x∈R,x2>0.【点评】本题考查命题的否定,特称命题与全称命题的否定关系,是基础题.16.二项式的展开式中只有第四项的二项式系数最大,则展开式中的常数项是______.参考答案:【分析】先利用展开式中只有第四项的二项式系数最大求出n=6,再求出其通项公式,令x的指数为0,求出r,再代入通项公式即可求出常数项的值.【详解】的展开式中只有第四项的二项式系数最大,所以n=6.其通项公式Tr+1=C6r?()r?,令30,求得r=2,可得展开式中的常数项为C62?()2,故答案为.【点睛】本题主要考查二项式定理中的常用结论:如果n为奇数,那么是正中间两项的二项式系数最大;如果n为偶数,那么是正中间一项的二项式系数最大,考查通项公式的应用,是基础题17.从某小学随机抽取100名同学,将他们身高(单位:厘米)数据绘制成频率分布直方图(如图)。由图中数据可知a=
。若要从身高在[120,130﹚,[130,140﹚,[140,150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为
。参考答案:0.030,
3三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(12分)已知椭圆的离心率,过点A(0,﹣b)和B(a,0)的直线与原点的距离为.(1)求椭圆的方程;(2)已知定点E(﹣1,0),若直线y=kx+2(k≠0)与椭圆交于C、D两点,问:是否存在k的值,使以CD为直径的圆过E点?请说明理由.参考答案:考点: 圆与圆锥曲线的综合;椭圆的标准方程.专题: 综合题.分析: (1)直线AB方程为bx﹣ay﹣ab=0,依题意可得:,由此能求出椭圆的方程.(2)假设存在这样的值.,得(1+3k2)x2+12kx+9=0,再由根的判别式和根与系数的关系进行求解.解答: 解:(1)直线AB方程为bx﹣ay﹣ab=0,依题意可得:,解得:a2=3,b=1,∴椭圆的方程为.(2)假设存在这样的值.,得(1+3k2)x2+12kx+9=0,∴△=(12k)2﹣36(1+3k2)>0…①,设C(x1,y1),D(x2,y2),则而y1?y2=(kx1+2)(kx2+2)=k2x1x2+2k(x1+x2)+4,要使以CD为直径的圆过点E(﹣1,0),当且仅当CE⊥DE时,则y1y2+(x1+1)(x2+1)=0,∴(k2+1)x1x2+(2k+1)(x1+x2)+5=0…③将②代入③整理得k=,经验证k=使得①成立综上可知,存在k=使得以CD为直径的圆过点E.点评: 本题考查圆与圆锥曲线的综合性质和应用,解题时要认真审题,仔细解答,注意合理地进行等价转化.19.某校从高一年级学生中随机抽取40名学生作为样本,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),[90,100)后得到如图的频率分布直方图.(Ⅰ)求图中实数a的值;(Ⅱ)根据频率分布直方图,试估计该校高一年级学生其中考试数学成绩的平均数;(Ⅲ)若从样本中数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取2名学生,试用列举法求这两名学生的数学成绩之差的绝对值不大于10的概率.参考答案:【考点】离散型随机变量的期望与方差;频率分布直方图;离散型随机变量及其分布列.【分析】(Ⅰ)由频率分布直方图中频率之和为1,能求出a.(Ⅱ)平均分是频率分布直方图各个小矩形的面积×底边中点横坐标之和,由此利用频率分布直方图能求出平均分.(Ⅲ)由频率分布直方图,得数学成绩在[40,50)内的学生人数为40×0.05=2,这两人分别记为A,B,数学成绩在[90,100)内的学生人数为40×0.1=4,这4人分别记为C,D,E,F,如果这两名学生的数学成绩都在[40,50)或都在[90,100)内,则这两名学生的数学成绩之差的绝对值不大于10,由此利用列举法能过河卒子同这两名学生的数学成绩之差的绝对值不大于10的概率.【解答】解:(Ⅰ)由频率分布直方图,得:10×(0.005+0.01+0.025+a+0.01)=1,解得a=0.03.(Ⅱ)由频率分布直方图得到平均分:=0.05×45+0.1×55+0.2×65+0.3×75+0.25×85+0.1×95=74(分).(Ⅲ)由频率分布直方图,得数学成绩在[40,50)内的学生人数为40×0.05=2,这两人分别记为A,B,数学成绩在[90,100)内的学生人数为40×0.1=4,这4人分别记为C,D,E,F,若从数学成绩在[40,50)与[90,100)两个分数段内的学生中随机选取2名学生,则所有的基本事件有:(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共15个,如果这两名学生的数学成绩都在[40,50)或都在[90,100)内,则这两名学生的数学成绩之差的绝对值不大于10,记“这两名学生的数学成绩之差的绝对值不大于10”为事件M,则事件M包含的基本事件有:(A,B),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共7个,所以这两名学生的数学成绩之差的绝对值不大于10的概率P=.【点评】本题考查频率和概率的求法,二查平均分的求法,是中档题,解题时要认真审题,注意频率分布直方图和列举法的合理运用.20.设等比数列的首项为,公比为(为正整数),且满足是与的等差中项;数列满足().(1)求数列的通项公式;(2)试确定的值,使得数列为等差数列;(3)当为等差数列时,对每个正整数,在与之间插入个2,得到一个新数列.设是数列的前项和,试求满足的所有正整数.参考答案:解:(1)(2)得,所以则由,得当时,,由,所以数列为等差数列(3)因为,可得不合题意,合题意当时,若后添入的数,则一定不符合题意,从而必是数列中的一项,则(2+2+…………+2)+(…………)=即记则,1+2+2+…………+2=,所以当时,=1+2+2+…………+2+1>1+2,又则由综上可知,满足题意的正整数仅有.略21.已知集合,若A∩B=A,求a的取值范围。参考答案:解:∵, 2分∵, 3分∵,∴解得, 5分∵A∩B=A,, 7分, 8分解得。 9分22.命题恒成立,命题q:函数是增函数.若为真命题,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 道路用划线机市场需求与消费特点分析
- 2024年度体育场馆广告位租赁合同
- 自行车座套市场需求与消费特点分析
- 肥皂碟市场需求与消费特点分析
- 2024年度宁波住宅销售代理合同
- 04版特许经营合同许可范围与经营指导
- 2024年度珠宝首饰定制合同:设计定制与销售
- 04版股权转让合同书模板(04版)
- 2024年度智能交通管理系统采购合同
- 2024年度太阳能热水器安装工程维修合同
- 急性冠脉综合征病例讨论
- 2024-2030年中国鞋类行业市场发展趋势与前景展望战略分析报告
- 共享餐厅合同协议书
- 潜在失效模式及后果分析FMEA新版表格2020.10.9
- 2024中智集团招聘重要岗位高频考题难、易错点模拟试题(共500题)附带答案详解
- 苏教版小学三年级科学上册单元测试题附答案(全册)
- 人教版部编道德与法治九上1.2《走向共同富裕》说课稿
- 光伏行业发展报告2024-2025
- 好书读书分享名著导读《童年》
- 申请征地信息公开范文
- 物流园保安服务投标方案(技术方案)
评论
0/150
提交评论