版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
考研数学一(矩阵及其运算)模拟试卷1(题后含答案及解析)题型有:1.选择题2.填空题3.解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。1.下列命题中不正确的是A.如A是n阶矩阵,则(A—E)(A+E)=(A+E)(A—E).B.如A,B均是n×1矩阵,则ATB=BTA.C.如A,B均是n阶矩阵,且AB=0,则(A+B)2=A2+B2.D.如A是n阶矩阵,则AmAk=AkAm.正确答案:C解析:(A)中,由乘法有分配律,两个乘积均是A2一E,而(D)是因乘法有结合律,两乘积都是Am+k,故(A),(D)都正确.关于(B),由于ATB,BTA都是1×1矩阵,而1阶矩阵的转置仍是其自身,故ATB=(ATB)T=BTA亦正确.唯(C)中,从AB=0还不能保证必有BA=0,例如A=,则AB=,因此,(C)不正确.选(C).知识模块:矩阵及其运算2.已知3阶矩阵A可逆,将A的第2列与第3列交换得B,再把B的第1列的一2倍加至第3列得C,则满足PA-1=C-1的矩阵P为A.B.C.D.正确答案:B解析:对矩阵A作一次初等列变换相当于用同类的初等矩阵右乘A,故应选(B).知识模块:矩阵及其运算3.设A,P均为3阶矩阵,PT为P的转置矩阵,且PTAP=.若P=(α1,α2,α3),Q=(α1+α2,α2,α3),则QTAQ=A.B.C.D.正确答案:A解析:对矩阵P作一次初等列变换:把第2列加至第1列,便可得到矩阵Q.若记E12(1)=,则Q=PE12(1).那么QTAQ=[PE12(1)]TA[PE12(1)]=(1)(PTAP)E12(1)所以应选(A).知识模块:矩阵及其运算4.设A是任一n(n≥3)阶方阵,A*是其伴随矩阵,又k为常数,且k≠0,±1,则必有(kA)*=A.kA*.B.kn-1A*.C.knA*.D.k-1A*.正确答案:B解析:由于kA=(kaij),故行列式|kA|的代数余子式按定义为再根据伴随矩阵的定义知应选(B).知识模块:矩阵及其运算5.设A,B是n阶矩阵,则C=的伴随矩阵是A.B.C.D.正确答案:D解析:由于CC*=|C|E=|A||B|E,因此应选(D).另外,作为选择题不妨附加条件A,b可逆,那么知识模块:矩阵及其运算6.设A,B,C是n阶矩阵,且ABC=E,则必有A.CBA=E.B.BCA=E.C.BAC=E.D.ACB=E.正确答案:B解析:由ABC=E知A(BC)=(BC)A=E,或(AB)C=C(AB)=E,可见(B)正确.由于乘法不一定能交换,故其余不恒成立.知识模块:矩阵及其运算7.设A,B,C均为n阶矩阵,E为n阶单位矩阵,若B=E+AB,C=A+CA,则B—C=A.E.B.一E.C.A.D.一A.正确答案:A解析:由B=E+AB(E一A)B=EB=(E—A)-1;C=A+CAC(E—A)=AC=A(E—A)-1(或C=AB).那么B—C=(E一A)-1-A(E—A)-1=(E—A)(E一A)-1=E(或B—C=B—AB=E).故选(A).知识模块:矩阵及其运算填空题8.设A,B均是n阶对称矩阵,则AB是对称矩阵的充要条件是__________.正确答案:AB=BA解析:两个对称矩阵的乘积不一定是对称矩阵.例如而AB对称AB=BTAT=BA.所以应填:AB=BA.知识模块:矩阵及其运算9.设α,β均为3维列向量,βT是β的转置矩阵,如果则αTβ=___________.正确答案:5解析:设α=(a1,a2,a3)T,β=(b1,b2,b3)T,则而αTβ=(a1,a2,a3)=a1b1+a2b2+a3b3,注意到αTβ正是矩阵αβT的主对角线元素之和,所以αTβ=1+6+(-2)=5.知识模块:矩阵及其运算10.设α=(1,2,3)T,β=(1,,0)T,A=αβT,则A3=_________.正确答案:解析:由于A=αβT==2.所以A3=(αβT)(αβT)(αβT)=α(βTα)(βTα)βT=4αβT=4A=知识模块:矩阵及其运算11.已知A=,则An=___________.正确答案:解析:由于A=λE+J,其中J=,而进而知J4=J5=…=0.于是知识模块:矩阵及其运算12.已知A=,则An=__________.正确答案:解析:对A分块为则B=3E+J,由于J3=J4=…=0,于是Bn=(3E+J)n=3nE+3n-2J2.而C=(3,-1),C2=6C,…,Cn=6n-1C,所以知识模块:矩阵及其运算13.设A=,则A2013一2A2012=___________.正确答案:0解析:由于A2013一2A2012=(A一2E)A2012,而A一2E=试乘易见(A一2E)A=0,从而A2013一2A2012=0.知识模块:矩阵及其运算14.已知PA=BP,其中P=,则A2012=__________.正确答案:E解析:因为矩阵P可逆,由PA=BP得A=P-1BP.那么A2=(P-1BP)(P-1BP)=P-1B(PP-1)BP=P-1B2P.归纳地A2012=P-1B2012P.因为,易见B2012=E.所以A2012=P-1EP=E.知识模块:矩阵及其运算15.已知2CA一2AB=C—B,其中A=,则C3=____________.正确答案:解析:由2CA一2AB=C-B得2CA一C=2AB—B.故有C(2A—E)=(2A—E)B.因为2A—E=可逆,所以C=(2A—E)B(2A—E)-1.那么C3=(2A—E)B3(2A—E)-1知识模块:矩阵及其运算16.已知A=,则An=___________.正确答案:解析:先求A的特征值与特征向量.由对λ=0,由(0E—A)x=0,解出α1=;对λ=6,由(6E—A)x=0,解出α2=令P=.而A=PAP-1,于是知识模块:矩阵及其运算17.=___________.正确答案:解析:E12=是初等矩阵,左乘A=所得E12A是A作初等行变换(1,2两行对换),而E122011A表示A作了奇数次的1,2两行对换,相当于矩阵A作了一次1,2两行对换,故而右乘E13是作1,3两列对换,由于是偶数次对换,因而结果不变,即为所求.知识模块:矩阵及其运算18.设A=,(A-1)*是A-1的伴随矩阵,则(A-1)*=__________.正确答案:解析:因为A-1.(A-1)*=|A-1|E,有(A-1)*=|A-1|A=A.本题|A|=6,所以(A-1)*=知识模块:矩阵及其运算19.已知n阶行列式|A|=,则|A|的第k行代数余子式的和Ak1+Ak2+…+Akn=___________.正确答案:解析:若依次求每个代数余子式再求和,这很麻烦.我们知道,代数余子式与伴随矩阵A*有密切的联系,而A*与A-1又密不可分.对于A用分块技巧,很容易求出A-1.由于又因A*=|A|A-1,那么可见Ak1+Ak2+…+Akn=知识模块:矩阵及其运算20.(Ⅰ)已知A=,则(A*)-1=____________.(Ⅱ)已知A=,则A-1=____________.(Ⅲ)设A,B均为三阶矩阵,E是三阶单位矩阵,已知AB=A一2B,B=,则(A+2E)-1=____________.(Ⅳ)设A=,B=(E+A)-1(E—A),则(E+B)-1=____________.(Ⅴ)如A3=0,则(E+A+A2)-1=____________.正确答案:解析:(Ⅰ)由AA*=|A|E,有(Ⅱ)A=(Ⅲ)由AB=A一2B有AB+2B=A+2E一2E,得知(A+2E)(E-B)=2E,即(A+2E)(E一B).(Ⅳ)由于B+E=(E+A)-1(E一A)+E=(E+A)-1(E—A)+(E+A)-1(E+A)=(E+A)-1[(E—A)+(E+A)]=2(E+A)-1,故(B+E)-1=(E+A).(Ⅴ)注意(E—A)(E+A+A2)=E—A3=E.知识模块:矩阵及其运算解答题解答应写出文字说明、证明过程或演算步骤。21.设A=,则A*的值.正确答案:涉及知识点:矩阵及其运算22.已知A是n阶对称矩阵,B是n阶反对称矩阵,证明A-B2是对称矩阵.正确答案:因为A—B2=A一BB=A+BTB,则有(A一B2)T=(A+BTB)T=AT+(BTB)T=A+BTB=A一B2.所以A一B2是对称矩阵.涉及知识点:矩阵及其运算23.证明上三角矩阵的乘积仍是上三角矩阵.正确答案:设A=(aij),B=(bij)都是n阶上三角矩阵.对AB=C=(cij),按矩阵乘法定义,有cij=ai1b1j+…+aii-1bi-1j+aiibij+aii+1bi+1j+…+ainbnj.由于A是上三角矩阵,则ai1=ai2=…=aii-1=0.因为B是上三角矩阵,当i>j时,有bij=bi+1j=…=bnj=0.因此,当i>j时,cij中的每一项都为0,从而cij=0.即AB是上三角矩阵.涉及知识点:矩阵及其运算24.某企业对其职工进行分批脱产技术培训,每年从在岗人员中抽调30%的人参加培训,而参加培训的职工中有60%的人结业回岗,假设现有在岗职工800人,参加培训人员是200人,试问两年后在岗与脱产培训职工各有多少人(假设职工人数不变)?正确答案:用xi,yi分别表示i年后在岗与脱产职工的人数,x0,y0为目前在岗与脱产的人数,则所以,两年后在岗职工668人,培训人员332人.涉及知识点:矩阵及其运算25.已知A=证明A2=lA,并求l.正确答案:因为A中任两行、任两列都成比例,故可把A分解成两个矩阵相乘,即A=(b1,b2,b3),那么,由矩阵乘法的结合律,有A2=(b1,b2,b3).由于(b1,b2,b3)=a1b1+a2b2+a3b3是1×1矩阵,是一个数,记为l,则有A2=lA.涉及知识点:矩阵及其运算26.已知A,B及A,C都可交换,证明A,B,C是同阶矩阵,且A与BC可交换.正确答案:设A是m×n矩阵,由AB可乘,故可设B是n×s矩阵.又因BA可乘,所以m=s.那么AB是m阶矩阵,BA是n阶矩阵.从A和B可交换,即AB=BA,得m=n,即A,B是同阶矩阵,同理,C与A,B也同阶,由结合律,有A(BC)=(AB)C=(BA)C=B(AC)=B(CA)=(BC)A,所以,A与BC可交换.涉及知识点:矩阵及其运算27.求与A=可交换的矩阵.正确答案:设,则有高斯消元,解出x1=2t+u,x2=2t,x3=t,x4=u.所以为所求.涉及知识点:矩阵及其运算28.已知A=,其中a1,a2,…,an两两不等.证明与A可交换的矩阵只能是对角矩阵.正确答案:设A与A可交换,并对A分别按列(行)分块,记为那么ajaij=aiaij,又因ai≠aj,可见aij=0(i≠j),即A是对角矩阵.涉及知识点:矩阵及其运算29.已知矩阵A=,求可逆矩阵P和Q,使PAQ=B.正确答案:对A作初等变换,有涉及知识点:矩阵及其运算30.设A为n阶可逆矩阵,证明:(A*)*=|A|n-2A.正确答案:用伴随矩阵A*替换关系式AA*=|A|E中的矩阵A,得到A*(A*)*=|A*|E.由于|A*|=|A|n-1,从A可逆知A*可逆.又因(A*)-1=,于是得到(A*)*=|A*|(A*)-1=|A|n-1.=|A|n-2A.涉及知识点:矩阵及其运算31.设A是n阶正交矩阵,证明A*也是正交矩阵.正确答案:由AAT=E,从行列式乘法公式知|A|2=|A|.|AT|=1.又因A-1=AT,于是A*=|A|A-1=|A|AT,那么A*(A*)T=|A|AT.|A|A=|A|2ATA=E.类似地(A*)TA*=E.所以,A*是正交矩阵.涉及知识点:矩阵及其运算32.已知A是3阶非零矩阵,且aij=Aij(=1,2,3),证明A可逆,并求|A|.正确答案:因为A是非零矩阵,不妨设a11≠0,那么按第一行展开,并将aij=Aij代入,即有|A|=a11A11+a12A12+a13A13=>0,所以,A可逆.即AT=A*,那么对AA*=|A|E两边取行列式,有|A|2=|A|.|AT|=||A|E|=|A|3,得|A|2(|A|-1)=0.从而|A|=1.涉及知识点:矩阵及其运算33.求A=的逆矩阵.正确答案:用伴随矩阵(2.10),得所以A*=涉及知识点:矩阵及其运算34.已知A是n阶对
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 望海潮课件教学课件
- 《工伤及工伤保险》课件
- 篮球运球课件
- 材料员述职报告范文
- 病故报告范文
- 个人与公司借款协议书范本
- 中职班会教案教学课件教学课件教学
- 2024年度文化艺术创作保密合同
- 《涂料工程施工》课件
- 2024年度钢筋市场销售合同3篇
- 喷涂设备订购合同范例
- 山东省济南市高新区2024-2025学年九年级上学期期中语文试题
- 2024年电梯安全总监安全员考试题参考
- 【新教材】2024-2025学年统编版语文七年级上册 第四单元综合性学习《少年正是读书时》课件5
- MOOC 营销管理-电子科技大学 中国大学慕课答案
- 工程全过程造价咨询服务方案(技术方案)
- 有限空间管理档案台账模板
- 2019年脚手架门式安全技术规范JGJ128-2010
- 服装英语:服装专业单词汇总3
- 电(光)缆敷设施工检查记录
- 劳模创新工作室创建申报材料表(含内容)
评论
0/150
提交评论