版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省芜湖市第十九中学2022-2023学年高一数学文月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知正数,满足,则的最小值为A.1B.C.D.参考答案:C2.已知直线3x+(3a﹣3)y=0与直线2x﹣y﹣3=0垂直,则a的值为()A.1 B.2 C.4 D.16参考答案:B【考点】IJ:直线的一般式方程与直线的垂直关系.【分析】利用直线与直线垂直的性质求解.【解答】解:直线3x+(3a﹣3)y=0与直线2x﹣y﹣3=0垂直,∴=﹣1解得a=2,故选:B3.曲线y=x3﹣6x2+9x﹣2在点(1,2)处的切线方程是()A.x=1 B.y=2 C.x﹣y+1=0 D.x+y﹣3=0参考答案:B【考点】利用导数研究曲线上某点切线方程.【分析】先求切线斜率,即f′(1)=3﹣2=1,然后由点斜式即可求出切线方程.【解答】解:f′(x)=3x2﹣12x+9,所以x=1,f′(1)=3﹣12+9=0,即函数y=x3﹣6x2+9x﹣2在点(1,2)处的切线斜率是0,所以切线方程为:y﹣2=0×(x﹣1),即y=2.故选:B.4.(多选题)已知圆和圆交于不同的两点,则下列结论正确的是(
)A. B.C. D.参考答案:ACD【分析】根据两圆的方程相减,求得公共弦所在直线的方程,代入点的坐标,结合圆的性质,即可求解,得到答案.【详解】由题意,由圆的方程可化为圆两圆的方程相减可得直线的方程为:即分别把两点代入可得两式相减可得即,所以选项C、D是正确的;由圆的性质可得,线段与线段互相平分,即中点和的中点重合,所以,所以选项A是正确的.故选:ACD.【点睛】本题主要考查了圆与圆的位置关系的判定与应用,其中熟记两圆的公共弦的方程的求解,以及合理应用圆的性质是解答本题的关键,着重考查了分析问题和解答问题的能力,难度一般.5.已知平面向量=(2,-1),=(1,1),=(-5,1),若∥,则实数k的值为()A.2
B.
C.
D.参考答案:B6.(5分)曲线y=+1(﹣2≤x≤2)与直线y=kx﹣2k+4有两个不同的交点时实数k的范围是() A. (,] B. (,+∞) C. (,) D. (﹣∞,)∪(,+∞)参考答案:A考点: 直线与圆相交的性质.专题: 直线与圆.分析: 根据直线过定点,以及直线和圆的位置关系即可得到结论.利用数形结合作出图象进行研究即可.解答: 由y=k(x﹣2)+4知直线l过定点(2,4),将y=1+,两边平方得x2+(y﹣1)2=4,则曲线是以(0,1)为圆心,2为半径,且位于直线y=1上方的半圆.当直线l过点(﹣2,1)时,直线l与曲线有两个不同的交点,此时1=﹣2k+4﹣2k,解得k=,当直线l与曲线相切时,直线和圆有一个交点,圆心(0,1)到直线kx﹣y+4﹣2k=0的距离d=,解得k=,要使直线l:y=kx+4﹣2k与曲线y=1+有两个交点时,则直线l夹在两条直线之间,因此<k≤,故选:A.点评: 本题主要考查直线和圆的位置关系的应用,利用数形结合是解决本题的关键,考查学生的计算能力.7.化简(
)A.2sin3° B.2cos3°C.-2sin3° D.-2cos3°参考答案:A【分析】根据同角三角函数的基本关系及正弦的二倍角公式化简开方即可.【详解】因为,所以原式故选A.【点睛】本题主要考查了二倍角公式,同角三角函数的基本关系,属于中档题.8.不等式2x2﹣x﹣1>0的解集是(
)A.()
B.(1,+∞)C.(﹣∞,1)∪(2,+∞)
D.()∪(1,+∞)参考答案:D9.“幸福感指数”是指某个人主观地评价他对自己目前生活状态的满意程度的指标,常用区间[0,10]内的一个数来表示,该数越接近10表示满意度越高.现随机抽取10位北京市民,他们的幸福感指数为3,4,5,5,6,7,7,8,9,10.则这组数据的75%分位数是(
)A.7 B.7.5 C.8 D.参考答案:C【分析】先计算分位数的位置,再求出这个数即可.【详解】由题意,这10个人的幸福指数已经从小到大排列,因为,所以这10个人的分位数是从小到大排列后第8个人的幸福指数,即8.故选:C【点睛】本题主要考查分位数的概念和计算,属于基础题.10.若,则是()A.
B.
C.
D.参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11.已知是直线上的动点,是圆的切线,是切点,是圆心,那么四边形面积的最小值是________________.参考答案:∵圆的方程为:x2+y2-2x-2y+1=0,∴圆心C(1,1)、半径r为:1。根据题意,若四边形的面积最小,则PC的距离最小,即PC的距离为圆心到直线的距离时,切线长PA,PB最小。又圆心到直线的距离为d=3,,。12.函数的单调递减区间是___________________.参考答案:略13.已知集合,,若,则实数的取值范围为
参考答案:略14.数列{an}的首项a1=1,前n项和为Sn=n2an,则通项公式an=
,数列{an}的和为
。参考答案:,2;15.函数的图象恒过定点在幂函数的图象上,则
参考答案:6416.在数列{an}中,a1=2,an+1=2an,Sn为{an}的前n项和,若Sn=126,则n=
.参考答案:6【考点】等比数列的前n项和;等比关系的确定.【分析】由an+1=2an,结合等比数列的定义可知数列{an}是a1=2为首项,以2为公比的等比数列,代入等比数列的求和公式即可求解.【解答】解:∵an+1=2an,∴,∵a1=2,∴数列{an}是a1=2为首项,以2为公比的等比数列,∴Sn===2n+1﹣2=126,∴2n+1=128,∴n+1=7,∴n=6.故答案为:617.若一个扇形的圆心角为2,周长为4cm,则该扇形的面积为
.参考答案:1三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.的边上的高所在直线方程分别为,,顶点,求边所在的直线方程.参考答案:解:因为边上的高所在直线方程为,所以直线的斜率为;所以直线的方程为,即,同理可求得直线的方程为.下面求直线的方程:由得顶点,由得顶点.所以直线的斜率为,所以直线的方程为,即.19.已知数列{an}的前n项和为Tn=n2﹣n,且an+2+3log4bn=0(n∈N*)(I)求{bn}的通项公式;(II)数列{cn}满足cn=an?bn,求数列{cn}的前n项和Sn;(III)若cn≤m2+m﹣1对一切正整数n恒成立,求实数m的取值范围.参考答案:【考点】数列与不等式的综合;数列的求和.【分析】(I)由Tn=n2﹣n,先求数列{an}的通项公式;代入到an+2+3log4bn=0(n∈N*)根据对数的运算性质化简即可求出{bn}的通项公式;(II)把第一问求出的两数列的通项公式代入cn=an?bn中,确定出cn的通项公式,从而求数列{cn}的前n项和Sn;(III)表示出cn+1﹣cn,判断得到其差小于0,故数列{cn}为递减数列,令n=1求出数列{cn}的最大值,然后原不等式的右边大于等于求出的最大值,列出关于m的一元二次不等式,求出不等式的解集即为实数m的取值范围.【解答】解:(I)由Tn=n2﹣n,易得an=3n﹣2代入到an+2+3log4bn=0(n∈N*)根据对数的运算性质化简bn=(n∈N*),(II)cn=an?bn=,∴∴两式相减整理得(III)cn=an?bn=(3n﹣2)?∴cn+1﹣cn=(3n+1)?﹣(3n﹣2)?=9(1﹣n)?(n∈N*),∴当n=1时,c2=c1=,当n≥2时,cn+1<cn,即c1=c2>c3>…>cn,∴当n=1时,cn取最大值是,又cn≤m2+m﹣1对一切正整数n恒成立∴m2+m﹣1≥,即m2+4m﹣5≥0,解得:m≥1或m≤﹣5.20.某公司试销一种新产品,规定试销时销售单价不低于成本单价500元/件,又不高于800元/件,经试销调查,发现销售量y(件)与销售单价(元/件),可近似看做一次函数的关系(图象如下图所示).(1)根据图象,求一次函数的表达式;(2)设公司获得的毛利润(毛利润=销售总价-成本总价)为S元,①求S关于的函数表达式;②求该公司可获得的最大毛利润,并求出此时相应的销售单价.
参考答案:(1)由图像可知,,解得,,…2分所以
.
…2分
(2)①由(1),
,.…3分
②由①可知,,其图像开口向下,对称轴为,所以当时,.
…2分
即该公司可获得的最大毛利润为62500元,此时相应的销售单价为750元/件.…1分
21.已知关于x,y的方程组有实数,求a,b的值.参考答案:【考点】复数相等的充要条件.【分析】利用复数相等的概念,列方程组解之即可.【解答】解:∵,∴,将上述结果代入第二个等式中得:5+4a﹣(10﹣4+b)i=9﹣8i;由两复数相等得:,解得22.有4个不同的球,4个不同的盒子,现在要把球全部放入盒内.(1)共有多少种放法?(用数字作答)(2)恰有一个盒不放球,有多少种放法?(用数字作答)(3)恰有两个盒不放球,有多少种方法?(用数字作答)参考答案:【考点】D9:排列、组合及简单计数问题.【分析】(1)每个球都有4种方法,故根据分步计数原理可求(2)由题意知需要先选两个元素作为一组再排列,恰有一个盒子中有2个小球,从4个小球中选两个作为一个元素,同另外两个元素在三个位置全排列,根据分步计数原理得到结果.(3)四个不同的球全部放入4个不同的盒子内,恰有两个盒子不放球的不同放法的求法,分为两步来求解,先把四个球分为两组,再取两个盒子,作全排列,由于四个球分两组有两种分法,一种是2,2,另一种是3,1,故此题分为两类来求解,再求出它们的和,然后选出正确选项【解答】解:(1)每个球都有4种方法,故有4×4×4×4=256种(2)四个不同的小球放入编号为1,2,3,4的四个盒子中,恰有一个空盒,说明恰有一个盒子中有2个小球,从4个小球中选两个作为一个元素,同另外两个元素在三个位置全排列,故共有C42A43=144种不同的放法.(3)四个球分为两组有两种分法,(2,2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 ISO 29981:2024 EN Milk products - Enumeration of bifidobacteria - Colony-count technique
- 合伙做生意三大注意事项
- 2024年网络安全评估与修复合同
- 二零二四年度版权转让合同:文学作品出版权交易
- 标准知识产权许可使用协议(二零二四年度适用)
- 2024年度二手房屋购买协议中的房屋交付方式及时间安排2篇
- 2024年度分包工程设备租赁合同2篇
- 二零二四年度企业vi设计及制作合同
- 二零二四年度新药研发与技术转让合同
- 二零二四年度内燃机驱动挖掘机性能提升改造合同
- 胃肠动力治疗仪使用
- 西安交通大学《法理学》2023-2024学年期末试卷
- 食品生产设备安装应急响应预案
- 2024年度亚马逊FBA货物海运合同
- 综合测试06散文阅读(多文本)-备战2025年高考语文一轮复习考点帮(新高考)(教师版)
- 完整2024年国有企业管理人员处分条例专题课件
- 六年级上册数学课件-6.1 分数混合运算 |西师大版 (共15张PPT)
- VI设计手册的设计与制作PPT课件
- 天然气管道冰堵发生原因及解堵措施
- 28科学发展盐城巨变
- 多项独立权利要求之间的对应关系与基本定理
评论
0/150
提交评论