福建省南平市夏道中学2021年高二数学理上学期期末试卷含解析_第1页
福建省南平市夏道中学2021年高二数学理上学期期末试卷含解析_第2页
福建省南平市夏道中学2021年高二数学理上学期期末试卷含解析_第3页
福建省南平市夏道中学2021年高二数学理上学期期末试卷含解析_第4页
福建省南平市夏道中学2021年高二数学理上学期期末试卷含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省南平市夏道中学2021年高二数学理上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.函数f(x)=(x2﹣2x)ex(e为自然数的底数)的图象大致是()参考答案:A略2.若一个椭圆的长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是(

)A.

B.

C.

D.

参考答案:B略3.设椭圆和双曲线的公共焦点为,是两曲线的一个公共点,则cos的值等于(

)A.

B.

C.

D.参考答案:B略4.直线(a为实常数)的倾斜角的大小是(

)A.30° B.60° C.120° D.150°参考答案:D考点:直线的倾斜角.专题:计算题.分析:由已知中直线的方程,可以求直线的斜率,进而根据直线斜率与倾斜角的关系,可以求出直线倾斜角的大小.解答:解:∵直线(a为实常数)的斜率为﹣令直线(a为实常数)的倾斜角为θ则tanθ=﹣解得θ=150°故选D点评:本题考查的知识点是直线的倾斜角,其中根据直线方程求出直线的斜率是解答本题的关键5.已知F1、F2是椭圆的两个焦点,过F1且与椭圆长轴垂直的直线交椭圆于A、B两点,若△ABF2是正三角形,则这个椭圆的离心率是

(

)

A.

B.

C.

D.参考答案:B6.已知正三角形ABC的边长为2,D是BC边的中点,将三角形ABC沿AD翻折,使,若三棱锥A﹣BCD的四个顶点都在球O的球面上,则球O的表面积为()A.7π B.19π C. D.参考答案:A【考点】球的体积和表面积.【分析】通过底面三角形BCD求出底面圆的半径DM,判断球心到底面圆的距离OD,求出球O的半径,即可求解球O的表面积.【解答】解:△BCD中,BD=1,CD=1,BC=,所以∠BDC=120°,底面三角形的底面圆半径为:DM=CM=1,AD是球的弦,DA=,∴OM=,∴球的半径OD=.该球的表面积为:4π×OD2=7π;故选:A7.已知a、b是不重合的两个平面,m、n是直线,下列命题中不正确的是A.若m∥n,m^a,则n^a

B.若m^a,mìb,则a^bC.若m^a,a∥b,则m^b

D.若a^b,mìa,则m^b参考答案:D8.用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,假设正确的是()A.假设三内角都不大于60度B.假设三内角都大于60度C.假设三内角至多有一个大于60度D.假设三内角至多有两个大于60度参考答案:B【考点】R9:反证法与放缩法.【分析】一些正面词语的否定:“是”的否定:“不是”;“能”的否定:“不能”;“都是”的否定:“不都是”;“至多有一个”的否定:“至少有两个”;“至少有一个”的否定:“一个也没有”;“是至多有n个”的否定:“至少有n+1个”;“任意的”的否定:“某个”;“任意两个”的否定:“某两个”;“所有的”的否定:“某些”.【解答】解:根据反证法的步骤,假设是对原命题结论的否定,“至少有一个”的否定:“一个也没有”;即“三内角都大于60度”.故选B9.下列有关命题的说法正确的是()A.命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”B.“x=1”是“x2﹣5x﹣6=0”的必要不充分条件.C.命题“?x∈R使得x2+x+1<0”的否定是:“?x∈R,均有x2+x+1<0”D.命题“若x=y,则sinx=siny”的逆否命题为真命题参考答案:D【考点】命题的真假判断与应用.【专题】综合题;对应思想;简易逻辑.【分析】写出命题的否定判断A;求解方程后结合充分必要条件的判断方法判断B;写出特称命题的否定判断C;由互为逆否命题的两个命题共真假判断D.【解答】解:命题“若x2=1,则x=1”的否命题为:“若x2≠1,则x≠1”,故A错误;由x2﹣5x﹣6=0,解得x=﹣1或x=6,∴“x=1”是“x2﹣5x﹣6=0”的既不充分也不必要条件,故B错误;命题“?x∈R使得x2+x+1<0”的否定是:“?x∈R,均有x2+x+1≥0”,故C错误;命题“若x=y,则sinx=siny”为真命题,∴其逆否命题为真命题,故D正确.故选:D.【点评】本题考查命题的真假判断与应用,考查了命题的否定和否命题,训练了充分必要条件的判断方法,是基础题.10.曲线在点(1,-1)处的切线方程为A. B.C. D.参考答案:A【分析】求得函数的导数,可得切线的斜率,运用点斜式方程可得切线的方程.【详解】的导数为,可得曲线在点(1,-1)处的切线斜率为,所以曲线在点(1,-1)处的切线方程为,即,故选A.【点睛】该题考查的是有关曲线在某点处的切线方程的问题,涉及到的知识点有求导公式,导数的几何意义,直线方程的点斜式,属于简单题目.二、填空题:本大题共7小题,每小题4分,共28分11.已知四棱椎的底面是边长为6的正方形,侧棱底面,且,则该四棱椎的体积是

;参考答案:9612.如图,F1,F2分别是双曲线C:﹣=1(a,b>0)的左、右焦点,B是虚轴的端点,直线F1B与C的两条渐近线分别交于P,Q两点,线段PQ的垂直平分线与x轴交与点M,若|MF2|=|F1F2|,则C的离心率是.参考答案:【考点】双曲线的简单性质.【分析】依题意可求得直线F1B的方程,与双曲线C的方程联立,利用韦达定理可求得PQ的中点坐标,从而可得线段PQ的垂直平分线的方程,继而可求得M点的坐标,从而可求得C的离心率.【解答】解:依题意F1(﹣c,0),B(0,b),∴直线F1B的方程为:y﹣b=x,与双曲线C的渐近线方程联立得:b2x2﹣a2=0,整理得:b2x2﹣2a2cx﹣a2c2=0,设P(x1,y1),Q(x2,y2),则x1,x2为上面方程的两根,由韦达定理得:x1+x2=,y1+y2=(x1+x2)+2b=,∴PQ的中点N(,),又直线MN的斜率k=﹣(与直线F1B垂直),∴直线MN的方程为:y﹣=﹣(x﹣),令y=0得M点的横坐标x=c+=.∵|MF2|=|F1F2|,∴﹣c=2c.∴c2=3b2=3(c2﹣a2),∴c2=a2,∴e==.故答案为:.【点评】本题考查直线与双曲线相交,考查韦达定理的应用,考查综合分析与计算能力,属于难题.13.已知是两条异面直线,,那么与的位置关系为____________________参考答案:异面或相交

就是不可能平行.略14.已知一几何体的三视图如下,正视图和侧视图都是矩形,俯视图为正方形,在该几何体上任意选择5个顶点,它们可能是如下各种几何形体的5个顶点,这些几何形体是(写出所有正确结论的编号)________.(其中)①每个侧面都是直角三角形的四棱锥;②正四棱锥;③三个侧面均为等腰三角形与三个侧面均为直角三角形的两个三棱锥的简单组合体④有三个侧面为直角三角形,另一个侧面为等腰三角形的四棱锥参考答案:①③④略15.如果某年年份的各位数字之和为7,我们称该年为“七巧年”.例如,今年年份2014的各位数字之和为7,所以今年恰为“七巧年”,那么从2000年到2999年中“七巧年”共有_________个.参考答案:21略16.椭圆+=1(a为定值,且a>)的左焦点为F,直线x=m与椭圆交于点A,B,△FAB的周长的最大值是12,则该椭圆的离心率是.参考答案:【考点】椭圆的简单性质.【分析】先画出图象,结合图象以及椭圆的定义求出△FAB的周长的表达式,进而求出何时周长最大,即可求出椭圆的离心率.【解答】解:设椭圆的右焦点E.如图:由椭圆的定义得:△FAB的周长为:AB+AF+BF=AB+(2a﹣AE)+(2a﹣BE)=4a+AB﹣AE﹣BE;∵AE+BE≥AB;∴AB﹣AE﹣BE≤0,当AB过点E时取等号;∴△FAB的周长:AB+AF+BF=4a+AB﹣AE﹣BE≤4a;∴△FAB的周长的最大值是4a=12?a=3;∴e===.故答案:.17.设的内角所对边的长分别为.若,则则角_____.参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.如图,在三棱柱中,侧面,均为正方形,∠,点是棱的中点.(1)求证:平面;(2)求AC与平面所成角的正弦值的大小.参考答案:19.已知函数.(1)求函数的图象在x=e处的切线方程;(2)求函数的最小值.参考答案:(1);(2).【分析】(1)由导数的几何意义求切线方程.(2)利用导数判断函数的单调性,进而得到最小值.【详解】(1),所以函数的图象在处的切线斜率.又,切点坐标为,所以函数的图象在处的切线方程为,即.(2)函数的定义域为,令,得.当时,,上单调递减;当时,,在上单调递增.所以函数的最小值为.【点睛】本题考查利用导数求切线方程,利用导数求最值.函数的图象在处的切线方程为.求连续可导函数的最值时,先求导数,解方程,再讨论函数的单调性得出最值.20.(15分)如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=PD.(1)证明:平面PQC⊥平面DCQ;(2)求二面角Q—BP—C的正弦值.参考答案:略21.解关于x的不等式x2+x﹣a(a﹣1)>0,(a∈R).参考答案:考点:一元二次不等式的解法.专题:不等式的解法及应用.分析:本题可以先对不等式左边进行因式分解,再对相应方程根的大小进行分类讨论,得到本题结论.解答:解:∵关于x的不等式x2+x﹣a(a﹣1)>0,∴(x+a)(x+1﹣a)>0,当﹣a>a﹣1,即时,x<a﹣1或x>﹣a,当a﹣1>﹣a,即a>时,x<﹣a或x>a﹣1,当a﹣1=﹣a,即时,x,∴当时,原不等式的解集为:{x|x<a﹣1或x>﹣a},当a>时,原不等式的解集为:{x|x<﹣a或x>a﹣1},当时,原不等式的解集为:{x|x,x∈R}.点评:本题考查了一元二次不等式的解法,还考查了分类讨论的数学思想,本题难度不大,属于基础题.22.(本小题满分16分)电子蛙跳游戏是:青蛙第一步从如图所示的正方体顶点起跳,每步从一顶点跳到相邻的顶点.(1)直接写出跳两步跳到的概率;(2)求跳三步跳到的概率;(3)青蛙跳五步,用表示跳到过的次数,求随机变量的概率分布.参考答案:将A标示为0,A1、B、D标示为1,B1、C、D1标示为2,C1标示为3,从A跳到B记为01,从B跳到B1再跳到A1记为121,其余类推.从0到1与从3到2的概率为1,从1到0与从2到3的概率为,从1到2与从2到1的概率为.(1)P=;

………4′

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论