版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高考数学总复习§.2算术平均数与几何平均数大纲-A3演示文稿设计与制作§6.2
算术平均数与几何平均数
考点探究·挑战高考考向瞭望·把脉高考6.2算术平均数与几何平均数双基研习·面对高考双基研习·面对高考基础梳理≥a=b正数≥算术平均数几何平均数小大思考感悟2.利用均值不等式求最值应注意什么条件?提示:利用均值不等式求最值,一定要注意使用的条件:一正(各数为正),二定(和或积为定值),三相等(等号在允许取值范围内能取到).课前热身答案:D答案:C答案:C考点探究·挑战高考考点突破考点一利用均值不等式证明不等式证明不等式时,可依据求证两端的式子结构,合理选择均值不等式及其变形不等式来证.参考本节教材例2.例1【领悟归纳】利用算术平均数与几何平均数的定理证明不等式,关键是所证不等式中必须具有“和”式或“积”式,通过将“和”式转化为“积”式或将“积”式转化为“和”式,从而达到放缩的效果.必要时,也需要运用“拆、拼、凑”的技巧,同时应注意多次运用定理时等号能否取到.互动探究1请你把上述不等式推广到一般情形,并证明你的结论.考点二利用均值不等式求最值合理拆分项或配凑因式是常用的技巧,而拆与凑的目标在于使等号成立,且每项为正值,必要时需出现积为定值或和为定值.参考教材例1.例2在实际应用问题中求最值时,应先将要求最值的量表示为某个变量的函数,然后利用不等式的知识和方法求出该函数的最值,参考教材本章的引言.考点三利用均值不等式解决实际问题例3
如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花园AMPN,要求B在AM上,D在AN上,且对角线MN过C点,已知AB=3米,AD=2米.(1)要使矩形AMPN的面积大于32平方米,则AN的长应在什么范围内?(2)当AN的长度是多少时,矩形AMPN的面积最小?并求最小面积.【思路分析】
①设AN=x,求出AM,建立不等式求x,②构造适合均值不等式的形式.【思维总结】把(x-2)视为一个整体,用均值不等式求最小值.互动探究3
若AN的长度不小于6米,则当AN的长度是多少时,矩形AMPN的面积最小?并求出最小面积.方法技巧1.运用均值不等式的技巧:在运用均值不等式时,要特别注意“拆、拼、凑”等技巧,使其满足均值不等式中“正”(条件要求中字母为正数)、“定”(不等式的一边必须为一定值)、“等”(等号取得的条件)的条件,如例2.方法感悟失误防范考向瞭望·把脉高考考情分析均值不等式是一个用途广泛的重要不等式,因而高考中作为重要考点久考不衰、常考常新.均值不等式具有“和与积”相互转化的放缩功能,备受命题者的青睐,试题既有选择题、填空题,又有实际应用题.客观题常常为单独命题的形式,其“干净利落”又不断出新,尤其与函数结合求最值,题目难度中档偏下.2010年的高考中,几乎各地方试题,都对此进行了考查,如大纲全国卷Ⅰ文理第11题.在平面图形中,结合向量、三角函数,利用均值不等式求最值,重庆理第7题针对二次函数求最值等难度适中.2012年高考将以选择题、填空题形式出现,考查学生运用均值不等式求最值的能力,对实际应用也不容忽视.命题探源例【答案】D那么解答这个题也应该很轻松.这两个题目,无论在题型和解答方法都是相同的,尤其对“=”连续成立时条件的使用,考查了学生“举一反三”的应变能力.既不是难题,又有新意,是一个考查基础与能力的好题.名师预测感谢观看谢谢大家A3演示文稿设计与制作信息技术2.0微能力认证作业中小学教师继续教育参考资料高考数学总复习第课时直接证明与间接证明文-A3演示文稿设计与制作第6课时直接证明与间接证明第6课时直接证明与间接证明考点探究·挑战高考考向瞭望·把脉高考温故夯基·面对高考温故夯基·面对高考证明的结论推理论证成立充分条件内容综合法分析法文字语言因为…所以…或由…得…要证…只需证即证…思考感悟综合法和分析法的区别与联系是什么?提示:综合法的特点是:从“已知”看“可知”,逐步推向“未知”.其逐步推理实际上是寻找它的必要条件.分析法的特点是:从“未知”看“需知”,逐步靠拢“已知”.其逐步推理实际上是寻求它的充分条件.在解决问题时,经常把综合法和分析法综合起来使用.2.间接证明反证法:假设原命题_______
(即在原命题的条件下,结论不成立),经过正确的推理,最后得出_____.因此说明假设错误,从而证明了原命题成立,这样的证明方法叫做反证法.不成立矛盾考点探究·挑战高考综合法考点一考点突破综合法是“由因导果”,它是从已知条件出发,顺着推证,经过一系列的中间推理,最后导出所证结论的真实性.用综合法证明的逻辑关系是:A⇒B1⇒B2⇒…⇒Bn⇒B(A为已知条件或数学定义、定理、公理等,B为要证结论),它的常见书面表达是“∵,∴”或“⇒”.例1分析法考点二分析法是“执果索因”,一步步寻求上一步成立的充分条件.它是从要求证的结论出发,倒着分析,由未知想需知,由需知逐渐地靠近已知(已知条件,已经学过的定义、定理、公理、公式、法则等).用分析法证明命题的逻辑关系是:B⇐B1⇐B2⇐…⇐Bn⇐A.它的常见书面表达是“要证……只需……”或“⇐”.例2【思路分析】
ab⇔a·b=0,利用a2=|a|2求证.平方得|a|2+|b|2+2|a||b|≤2(|a|2+|b|2-2a·b),只需证|a|2+|b|2-2|a||b|≥0,即(|a|-|b|)2≥0,显然成立.故原不等式得证.【误区警示】本题从要证明的结论出发,探求使结论成立的充分条件,最后找到的恰恰都是已证的命题(定义、公理、定理、法则、公式等)或要证命题的已知条件时,命题得证.这正是分析法证明问题的一般思路.一般地,含有根号、绝对值的等式或不等式,若从正面不易推导时,可以考虑用分析法.反证法考点三反证法体现了正难则反的思维方法,用反证法证明问题的一般步骤是:(1)分清问题的条件和结论;(2)假定所要证的结论不成立,而设结论的反面成立(否定结论);(3)从假设和条件出发,经过正确的推理,导出与已知条件、公理、定理、定义及明显成立的事实相矛盾或自相矛盾(推导矛盾);(4)因为推理正确,所以断定产生矛盾的原因是“假设”错误.既然结论的反面不成立,从而证明了原结论成立(结论成立).例3【思路分析】
(1)利用求和公式先求公差d,(2)利用反证法证明.【名师点评】当一个命题的结论是以“至多”、“至少”、“唯一”或以否定形式出现时,宜用反证法来证,反证法的关键是在正确的推理下得出矛盾,矛盾可以是与已知条件矛盾,与假设矛盾,与定义、公理、定理矛盾,与事实矛盾等,反证法常常是解决某些“疑难”问题的有力工具,是数学证明中的一件有力武器.方法感悟方法技巧1.分析法和综合法各有优缺点.分析法思考起来比较自然,容易寻找到解题的思路和方法,缺点是思路逆行,叙述较繁琐;综合法从条件推出结论,较简洁地解决问题,但不便于思考.实际证题时常常两法兼用,先用分析法探索证明途径,然后再用综合法叙述出来.2.利用反证法证明数学问题时,要假设结论错误,并用假设命题进行推理,没有用假设命题推理而推出矛盾结果,其推理过程是错误的.3.用分析法证明数学问题时,要注意书写格式的规范性,常常用“要证(欲证)”…“即要证”…“就要证”等分析得到一个明显成立的结论P,再说明所要证明的数学问题成立.失误防范1.反证法证明中要注意的问题(1)必须先否定结论,即肯定结论的反面,当结论的反面呈现多样性时,必须罗列出各种可能结论,缺少任何一种可能,反证都是不完全的;(2)反证法必须从否定结论进行推理,即应把结论的反面作为条件,且必须根据这一条件进行推证,否则,仅否定结论,不从结论的反面出发进行推理,就不是反证法;(3)推导出的矛盾可能多种多样,有的与已知矛盾,有的与假设矛盾,有的与事实矛盾等,推导出的矛盾必须是明显的.2.常见的“结论词”与“反设词”原结论词反设词原结论词反设词至少有一个一个也没有对所有x成立存在某个x不成立至多有一个至少有两个对任意x不成立存在某个x成立至少有n个至多有n-1个p或q綈p且綈q至多有n个至少有n+1个p且q綈p或綈q考向瞭望·把脉高考考情分析从近几年的高考试题来看,综合法、反证法证明问题是高考的热点,题型大多为解答题,难度为中、高档;主要是在知识交汇点处命题,像数列,立体几何中的平行、垂直,不等式,解析几何等都有可能考查,在考查数学基本概念的同时,注重考查等价转化、分类讨论思想以及学生的逻辑推理能力.预测2012年广东高考仍将以综合法证明为主要考点,偶尔会出现反证法证明的题目,重点考查运算能力与逻辑推理能力.规范解答例【名师点评】本题考查了数列的计算及反证法的证明,试题为中高档题,易误点为:一是不能转化为新数列
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高层建筑空气源热泵使用方案
- 幼儿园在线资源共享方案
- 福山陵园会员制度优化方案
- 化工企业废水处理药剂方案
- 石油化工除氧水箱施工方案
- 国庆节活动现场安全生产方案
- 居家人员生活服务管理制度
- 老年人友好型橱柜设计与维护方案
- 昆明2024年01版小学4年级上册英语第一单元真题试卷
- 家庭协议书(2篇)
- 期中考试卷(试题)-2024-2025学年苏教版二年级数学上册
- 2024年全国企业员工全面质量管理知识竞赛题库(含答案)(共132题)
- 《国有企业采购操作规范》【2023修订版】
- 新员工轮岗实习鉴定表
- 在京中央和国家机关住房交易办公室
- 深圳市政府合同管理若干规定
- 2022年高考数学必刷压轴题专题03函数的奇偶性对称性周期性₍含解析₎
- 十四五粮食行业规划
- 钣金与焊接工艺规范
- 华东理工大学PPT模板
- 一年级上册语文期中考试试卷分析
评论
0/150
提交评论