2022-2023学年广东高明一中高一数学第二学期期末学业水平测试试题含解析_第1页
2022-2023学年广东高明一中高一数学第二学期期末学业水平测试试题含解析_第2页
2022-2023学年广东高明一中高一数学第二学期期末学业水平测试试题含解析_第3页
2022-2023学年广东高明一中高一数学第二学期期末学业水平测试试题含解析_第4页
2022-2023学年广东高明一中高一数学第二学期期末学业水平测试试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数,若关于的不等式的解集为,则A. B.C. D.2.某学校随机抽取20个班,调查各班中有网上购物经历的人数,所得数据的茎叶图如图所示.以组距为5将数据分组成[0,5),[5,10),…,[30,35),[35,40]时,所作的频率分布直方图是()A. B.C. D.3.过点作圆的切线,且直线与平行,则与间的距离是()A. B. C. D.4.如图所示,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设,若在大等边三角形中随机取一点,则此点取自小等边三角形的概率是()A. B. C. D.5.为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,,第五组,如图是根据试验数据制成的频率分布直方图,已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为()A.6 B.8 C.12 D.186.已知圆C1:x2+y2+4y+3=0,圆C2:x2+A.210-3 B.210+37.已知等差数列和的前项和分别为和,.若,则的取值集合为()A. B.C. D.8.若关于x的一元二次不等式ax2+2ax+1>0A.(-∞,0)∪(1,+∞) B.(0,1) C.(-∞,0]∪(1,+∞)9.将一个底面半径和高都是的圆柱挖去一个以上底面为底面,下底面圆心为顶点的圆锥后,剩余部分的体积记为,半径为的半球的体积记为,则与的大小关系为()A. B. C. D.不能确定10.如果直线m//直线n,且m//平面α,那么n与αA.相交 B.n//α C.n⊂α二、填空题:本大题共6小题,每小题5分,共30分。11.实数2和8的等比中项是__________.12.已知四棱锥的底面是边长为的正方形,侧棱长均为,若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的侧面积为________.13.已知数列,其前项和为,若,则在,,…,中,满足的的个数为______.14.如图,已知圆,六边形为圆的内接正六边形,点为边的中点,当六边形绕圆心转动时,的取值范围是________.15.某几何体是由一个正方体去掉一个三棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积是___16.若则的最小值是__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,四棱锥P-ABCD的底面是矩形,侧面PAD是正三角形,且侧面PAD⊥底面ABCD,E为侧棱PD的中点.(1)求证:PB//平面EAC;(2)求证:AE⊥平面PCD;(3)当为何值时,PB⊥AC?18.如图,以Ox为始边作角与(),它们终边分别单位圆相交于点、,已知点的坐标为.(1)若,求角的值;(2)若·,求.19.已知公差不为的等差数列满足.若,,成等比数列.(1)求的通项公式;(2)设,求数列的前项和.20.已知直线l过点(1,3),且在y轴上的截距为1.

(1)求直线l的方程;

(2)若直线l与圆C:(x-a)2+(y+a)2=5相切,求实数a的值.21.如图,已知矩形ABCD中,,,M是以CD为直径的半圆周上的任意一点(与C,D均不重合),且平面平面ABCD.(1)求证:平面平面BCM;(2)当四棱锥的体积最大时,求AM与CD所成的角.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

由题意可得,且,3为方程的两根,运用韦达定理可得,,的关系,可得的解析式,计算,(1),(4),比较可得所求大小关系.【详解】关于的不等式的解集为,可得,且,3为方程的两根,可得,,即,,,,可得,(1),(4),可得(4)(1),故选.【点睛】本题主要考查二次函数的图象和性质、函数与方程的思想,以及韦达定理的运用。2、A【解析】由于频率分布直方图的组距为5,去掉C、D,又[0,5),[5,10)两组各一人,去掉B,应选A.3、D【解析】由题意知点在圆C上,圆心坐标为,所以,故切线的斜率为,所以切线方程为,即.因为直线l与直线平行,所以,解得,所以直线的方程是-4x+3y-8=0,即4x-3y+8=0.所以直线与直线l间的距离为.选D.4、A【解析】

根据题意,分析可得,由三角形面积公式计算可得△DEF和△ACF的面积,进而可得△ABC的面积,由几何概型公式计算可得答案.【详解】根据题意,为等边三角形,则,则,中,,其面积,中,,,其面积,则的面积,故在大等边三角形中随机取一点,则此点取自小等边三角形的概率,故选:A.【点睛】本题主要考查几何概型中的面积类型,基本方法是:分别求得构成事件A的区域面积和试验的全部结果所构成的区域面积,两者求比值,即为概率.5、C【解析】试题分析:由直方图可得分布在区间第一组与第二组共有21人,分布在区间第一组与第二组的频率分别为1.24,1.16,所以第一组有12人,第二组8人,第三组的频率为1.36,所以第三组的人数:18人,第三组中没有疗效的有6人,第三组中有疗效的有12人.考点:频率分布直方图6、A【解析】

求出圆C1,C2的圆心坐标和半径,作出圆C1关于直线l的对称圆C1',连结C1'C2,则C1'C2与直线l的交点即为P点,此时M点为P【详解】由圆C1:x可知圆C1圆心为0,-2圆C2圆心为3,-1圆C1关于直线l:y=x+1的对称圆为圆C连结C1'C2,交l于P,则此时M点为PC1'与圆C1'的交点关于直线l对称的点,N最小值为C1而C1∴PM+PN【点睛】本题考查了圆方程的综合应用,考查了利用对称关系求曲线上两点间的最小距离,体现了数形结合的解题思想方法,是中档题.解决解析几何中的最值问题一般有两种方法:一是几何意义,特别是用曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将解析几何中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法求解.7、D【解析】

首先根据即可得出,再根据前n项的公式计算出即可。【详解】,选D.【点睛】本题主要考查等差数列的求和公式及等差数列的性质,属于难题.等差数列的常用性质有:(1)通项公式的推广:

(2)若

为等差数列,

;(3)若是等差数列,公差为,

,则是公差

的等差数列;8、B【解析】

由题意,得出a≠0,再分析不等式开口和判别式,可得结果.【详解】由题,因为为一元二次不等式,所以a≠0又因为ax所以a>0Δ=故选B【点睛】本题考查了一元二次不等式解法,利用二次函数图形解题是关键,属于基础题.9、C【解析】

根据题意分别表示出,通过比较。【详解】所以,选C。【点睛】,,。记住这几个公式即可,属于基础题目。10、D【解析】

利用直线与平面平行的判定定理和直线与平面平行的性质进行判断即可.【详解】∵直线m/直线n,且m/平面∴当n不在平面α内时,平面α内存在直线m'//m⇒n//m',符合线面平行的判定定理可得n/平面α当n在平面α内时,也符合条件,n与α的位置关系是n//α或【点睛】本题主要考查线面平行的判定定理以及线面平行的性质,意在考查对基本定理掌握的熟练程度,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】所求的等比中项为:.12、【解析】

先求出四棱锥的底面对角线的长度,结合勾股定理可求出四棱锥的高,然后由圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,可知四条侧棱的中点连线为正方形,其对角线为圆柱底面的直径,圆柱的高为四棱锥的高的一半,分别求解可求出圆柱的侧面积.【详解】由题可知,四棱锥是正四棱锥,四棱锥的四条侧棱的中点连线为正方形,边长为,该正方形对角线的长为1,则圆柱的底面半径为,四棱锥的底面是边长为的正方形,其对角线长为2,则四棱锥的高为,故圆柱的高为1,所以圆柱的侧面积为.【点睛】本题主要考查了空间几何体的结构特征,考查了学生的空间想象能力与计算求解能力,属于中档题.13、1【解析】

运用周期公式,求得,运用诱导公式及三角恒等变换,化简可得,即可得到满足条件的的值.【详解】解:,可得周期,,则满足的的个数为.故答案为:1.【点睛】本题考查三角函数的周期性及应用,考查三角函数的化简和求值,以及运算能力,属于中档题.14、【解析】

先求出,再化简得即得的取值范围.【详解】由题得OM=,由题得由题得..所以的取值范围是.故答案为【点睛】本题主要考查平面向量的运算和数量积运算,意在考查学生对这些知识的理解掌握水平和分析推理能力.15、6【解析】

先作出几何体图形,再根据几何体的体积等于正方体的体积减去三棱柱的体积计算.【详解】几何体如图所示:去掉的三棱柱的高为2,底面面积是正方体底面积的,所以三棱柱的体积:所以几何体的体积:【点睛】本题考查三视图与几何体的体积.关键是作出几何体的图形,方法:先作出正方体的图形,再根据三视图“切”去多余部分.16、【解析】

根据对数相等得到,利用基本不等式求解的最小值得到所求结果.【详解】则,即由题意知,则,则当且仅当,即时取等号本题正确结果:【点睛】本题考查基本不等式求解和的最小值问题,关键是能够利用对数相等得到的关系,从而构造出符合基本不等式的形式.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)见解析【解析】

1)连结BD交AC于O,连结EO,由EO//PB可证PB//平面EA.(2)由侧面PAD⊥底面ABCD,,可证,又PAD是正三角形,所以AE⊥平面PCD.(3)设N为AD中点,连接PN,则,可证PN⊥底面ABCD,所以要使PB⊥AC,只需NB⊥AC,由相似三角形可求得比值.【详解】(1)连结BD交AC于O,连结EO,因为O,E分别为BD.PD的中点,所以EO//PB,,所以PB//平面EAC.(2)正三角形PAD中,E为PD的中点,所以,,又,所以,AE⊥平面PCD.(3)设N为AD中点,连接PN,则.又面PAD⊥底面ABCD,所以,PN⊥底面ABCD.所以,NB为PB在面ABCD上的射影.要使PB⊥AC,只需NB⊥AC,在矩形ABCD中,设AD=1,AB=x,由,得∽,解之得:,所以,当时,PB⊥AC.【点睛】本题综合考查线面平行的判定,线面垂直的判定,及探索性问题找异面直线垂直,第三问难度较大,需要把异面直线垂直转化为射影垂直,即共面垂直问题.18、(1)(2)【解析】

(1)由已知利用三角函数的定义可求,利用两角差的正切公式即可计算得解;(2)由已知可得,进而求出,最后利用两角和的正弦公式即可计算得解.【详解】(1)由三角函数定义得,因为,所以,因为,所以(2)·,∴∴,所以,所以【点睛】本题主要考查了同角三角函数基本关系式,两角差的正切公式,两角和的正弦公式,考查了计算能力和转化思想,属于基础题.19、(1);(2).【解析】

(1)根据对比中项的性质即可得出一个式子,再带入等差数列的通项公式即可求出公差.(2)根据(1)的结果,利用分组求和即可解决.【详解】(1)因为成等比数列,所以,所以,即,因为,所以,所以;(2)因为,所以,,.【点睛】本题主要考查了等差数列通项式,以及等差中项的性质.数列的前的求法,求数列前项和常用的方法有错位相减、分组求和、裂项相消.20、(1)y=2x+1;(2)a=-2或【解析】

(1)求得直线的斜率,再由点斜式方程可得所求直线方程;(2)运用直线和圆相切的条件,即圆心到直线的距离等于半径,解方程可得所求值.【详解】(1)直线l过点(1,3),且在y轴上的截距为1,可得直线l的斜率为=2,则直线l的方程为y3=2(x1),即y=2x+1;

(2)若直线l与圆C:(xa)2+(y+a)2=5相切,

可得圆心(a,a)到直线l的距离为,即有

=,解得a=2或.【点睛】本题考查直线方程和圆方程的运用,考查直线和圆相切的条件,考查方程思想和运算能力,属于基础题.21、(1)证明见解析(2)【解析】

(1)只证明CM⊥平面ADM即可,即证明CM垂直于该平面内的两条相交直线,或者使用面面垂直的性质,本题的条件是平面CDM⊥平面ABCD,而M是以CD为直径的半圆周上一点,能够得到CM⊥DM,由面面垂直的性质即可证明;(2)当四棱锥M一ABCD的体积最大时,M为半圆周中点处,可得角MAB就是AM与CD所成的角,利用已知即可求解.【详解】(1)证明:CD为直径,所以CMDM,已知平面CDM平面ABCD,ADCD,AD

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论