2023年河南省张家口市涿鹿中学数学高一下期末监测模拟试题含解析_第1页
2023年河南省张家口市涿鹿中学数学高一下期末监测模拟试题含解析_第2页
2023年河南省张家口市涿鹿中学数学高一下期末监测模拟试题含解析_第3页
2023年河南省张家口市涿鹿中学数学高一下期末监测模拟试题含解析_第4页
2023年河南省张家口市涿鹿中学数学高一下期末监测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知中,,则角()A.60°或120° B.30°或90° C.30° D.90°2.已知200辆汽车通过某一段公路时的时速的频率分布直方图如图所示,时速在的汽车辆数为()A.8 B.80 C.65 D.703.若,则()A. B. C.2 D.4.直线与圆相交于点,则()A. B. C. D.5.已知函数在上是减函数,则实数的取值范围是()A. B. C. D.6.在等差数列中,若,则()A. B. C. D.7.在中,边,,分别是角,,的对边,且满足,若,则的值为A. B. C. D.8.如图,水平放置的三棱柱的侧棱长和底边长均为4,且侧棱垂直于底面,正视图是边长为4的正方形,则三棱柱的左视图面积为()A. B. C. D.9.设,为两条不同的直线,,为两个不同的平面,给出下列命题:①若,,则;②若,,则;③若,,,则;④若,,则与所成的角和与所成的角相等.其中正确命题的序号是()A.①② B.①④ C.②③ D.②④10.用数学归纳法证明的过程中,设,从递推到时,不等式左边为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.________.12.已知数列满足:其中,若,则的取值范围是______.13.已知,,若,则实数________.14.若满足约束条件,则的最小值为_________.15.已知数列中,,当时,,数列的前项和为_____.16.已知等差数列中,首项,公差,前项和,则使有最小值的_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.两地相距千米,汽车从地匀速行驶到地,速度不超过千米小时,已知汽车每小时的运输成本(单位:元)由可变部分和固定部分两部分组成:可变部分与速度的平方成正比,比例系数为,固定部分为元,(1)把全程运输成本(元)表示为速度(千米小时)的函效:并求出当时,汽车应以多大速度行驶,才能使得全程运输成本最小;(2)随着汽车的折旧,运输成本会发生一些变化,那么当,此时汽车的速度应调整为多大,才会使得运输成本最小,18.已知函数.(1)若,求函数有零点的概率;(2)若,求成立的概率.19.已知定义域为的函数是奇函数(Ⅰ)求值;(Ⅱ)判断并证明该函数在定义域上的单调性;(Ⅲ)若对任意的,不等式恒成立,求实数的取值范围;(Ⅳ)设关于的函数有零点,求实数的取值范围.20.如图,某广场中间有一块绿地,扇形所在圆的圆心为,半径为,,广场管理部门欲在绿地上修建观光小路:在上选一点,过修建与平行的小路,与平行的小路,设所修建的小路与的总长为,.(1)试将表示成的函数;(2)当取何值时,取最大值?求出的最大值.21.已知函数(ω>0)的最小正周期为π.(Ⅰ)求ω的值和f(x)的单调递增区间;(Ⅱ)若关于x的方程f(x)﹣m=0在区间[0,]上有两个实数解,求实数m的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

由正弦定理求得,再求.【详解】由正弦定理,∴,或,时,,时,.故选:B.【点睛】本题考查正弦定理,在用正弦定理解三角形时,可能会出现两解,一定要注意.2、B【解析】

先计算时速在的汽车频率,再乘200,。【详解】由图知:时速在的汽车频率为所以时速在的汽车辆数为,选B.【点睛】本题考查频率分布直方图,属于基础题。3、D【解析】

将转化为,结合二倍角的正切公式即可求出.【详解】故选D【点睛】本题主要考查了二倍角的正切公式,关键是将转化为,利用二倍角的正切公式求出,属于基础题.4、D【解析】

利用直线与圆相交的性质可知,要求,只要求解圆心到直线的距离.【详解】由题意圆,可得圆心,半径,圆心到直线的距离.则由圆的性质可得,所以.故选:D【点睛】本题考查了求弦长、圆的性质,同时考查了点到直线的距离公式,属于基础题.5、C【解析】

根据复合函数单调性,结合对数型函数的定义域列不等式组,解不等式组求得的取值范围.【详解】由于的底数为,而函数在上是减函数,根据复合函数单调性同增异减可知,结合对数型函数的定义域得,解得.故选:C【点睛】本小题主要考查根据对数型复合函数单调性求参数的取值范围,属于基础题.6、B【解析】

由等差数列的性质可得,则答案易求.【详解】在等差数列中,因为,所以.所以.故选B.【点睛】本题考查等差数列性质的应用.在等差数列中,若,则.特别地,若,则.7、A【解析】

利用正弦定理把题设等式中的边换成角的正弦,进而利用两角和公式化简整理可得的值,由可得的值【详解】在中,由正弦定理可得化为:即在中,,故,可得,即故选【点睛】本题以三角形为载体,主要考查了正弦定理,向量的数量积的运用,考查了两角和公式,考查了分析问题和解决问题的能力,属于中档题。8、A【解析】

根据题意,得出该几何体左视图的高和宽的长度,求出它的面积,即可求解.【详解】根据题意,该几何体左视图的高是正视图的高,所以左视图的高为,又由左视图的宽是俯视图三角形的底边上的高,所以左视图的宽为,所以该几何体的左视图的面积为,故选A.【点睛】本题考查了几何体的三视图及体积的计算,在由三视图还原为空间几何体的实际形状时,要根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线,求解以三视图为载体的空间几何体的表面积与体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应公式求解.9、D【解析】

根据线面平行的性质和面面垂直的判定可知②④正确.【详解】对于①,若,,或,故①错;对于②,过作一个平面,它与平面交于,则,因为,故,因为,故,故②成立;对于③,由面面垂直的性质定理可知前提条件缺少,故③错;对于④,如图所示,如果分别于平面斜交,且斜足分别为,在直线上分别截取斜线段、,使得,过分别作平面的垂线,垂足分别为,连接,则分别为与平面所成的角、与平面所成的角,因为,故,所以,故.当分别垂直于时,;当分别平行于时,;故与所成的角和与所成的角相等,故④正确.故选D.【点睛】本题考查空间中的点、线、面的位置关系,正确判断这些命题的真假的前提是熟悉公理、定理的前提条件,同时需要动态考虑它们的位置关系,观察是否有不同的情况出现.10、C【解析】

比较与时不等式左边的项,即可得到结果【详解】因此不等式左边为,选C.【点睛】本题考查数学归纳法,考查基本分析判断能力,属基础题二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

直接利用两角和与差的余弦函数公式及特殊角的三角函数值化简,即可得到结果.【详解】.故答案为:.【点睛】本题考查两角和与差的余弦函数公式,以及特殊角的三角函数值,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力.12、【解析】

令,逐步计算,即可得到本题答案.【详解】1.当时,因为,所以;2.当时,因为,所以;3.当时,①若,即,有,1)当,即,,由题,有,得,综上,无解;2)当,即,,由题,有,得,综上,无解;②若,,,1)当,即,,由题,有,得,综上,得;2)当,即,,由题,有,得,综上,得.所以,.故答案为:.【点睛】本题主要考查由数列递推公式确定参数取值范围的问题,分类讨论思想是解决本题的关键.13、2或【解析】

根据向量平行的充要条件代入即可得解.【详解】由有:,解得或.故答案为:2或.【点睛】本题考查了向量平行的应用,属于基础题.14、3【解析】

在平面直角坐标系内,画出可行解域,平行移动直线,在可行解域内,找到直线在纵轴上截距最小时所经过点的坐标,代入目标函数中,求出目标函数的最小值.【详解】在平面直角坐标系中,约束条件所表示的平面区域如下图所示:当直线经过点时,直线纵轴上截距最小,解方程组,因此点坐标为,所以的最小值为.【点睛】本题考查了线性目标函数最小值问题,正确画出可行解域是解题的关键.15、.【解析】

首先利用数列的关系式的变换求出数列为等差数列,进一步求出数列的通项公式,最后求出数列的和.【详解】解:数列中,,当时,,整理得,即,∴数列是以为首项,6为公差的等差数列,故,所以,故答案为:.【点睛】本题主要考查定义法判断等差数列,考查等差数列的前项和,考查运算能力和推理能力,属于中档题.16、或【解析】

求出,然后利用,求出的取值范围,即可得出使得有最小值的的值.【详解】,令,解得.因此,当或时,取得最小值.故答案为:或.【点睛】本题考查等差数列前项和的最小值求解,可以利用二次函数性质求前项和的最小值,也可以转化为数列所有非正数项相加,考查计算能力,属于中等题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),当汽车以的速度行驶,能使得全称运输成本最小;(2).【解析】

(1)计算出汽车的行驶时间为小时,可得出全程运输成本为,其中,代入,,利用基本不等式求解;(2)注意到时,利用基本不等式取不到等号,转而利用双勾函数的单调性求解.【详解】(1)由题意可知,汽车从地到地所用时间为小时,全程成本为,.当,时,,当且仅当时取等号,所以,汽车应以的速度行驶,能使得全程行驶成本最小;(2)当,时,,由双勾函数的单调性可知,当时,有最小值,所以,汽车应以的速度行驶,才能使得全程运输成本最小.【点睛】本题考查基本不等式的应用,解题的关键就是建立函数模型,得出函数解析式,并通过基本不等式进行求解,考查学生数学应用能力,属于中等题.18、(1);(2)【解析】

(1)求得有零点的条件,运用古典概率的公式,计算可得所求;(2)若,即,画出不等式组表示的区域,计算面积可得所求.【详解】解:(1)函数有零点的条件为,即,,可得事件的总数为,而有零点的个数为,,,,,,共7个,则函数有零点的概率为;(2)若,即,画出的区域,可得成立的概率为.【点睛】本题考查古典概率和几何概率的求法,考查运算能力,属于基础题.19、(Ⅰ);(Ⅱ)答案见解析;(Ⅲ)(Ⅳ).【解析】试题分析:(1)根据奇函数性质得,解得值;(2)根据单调性定义,作差通分,根据指数函数单调性确定因子符号,最后根据差的符号确定单调性(3)根据奇偶性以及单调性将不等式化为一元二次不等式恒成立问题,利用判别式求实数的取值范围;(4)根据奇偶性以及单调性将方程转化为一元二次方程有解问题,根据二次函数图像与性质求值域,即得实数的取值范围.试题解析:(Ⅰ)由题设,需,∴,∴,经验证,为奇函数,∴.(Ⅱ)减函数证明:任取,,且,则,∵∴∴,;∴,即∴该函数在定义域上是减函数.(Ⅲ)由得,∵是奇函数,∴,由(Ⅱ)知,是减函数∴原问题转化为,即对任意恒成立,∴,得即为所求.(Ⅳ)原函数零点的问题等价于方程由(Ⅱ)知,,即方程有解∵,∴当时函数存在零点.点睛:利用函数性质解不等式:首先根据函数的性质把不等式转化为的形式,然后根据函数的单调性去掉“”,转化为具体的不等式(组),此时要注意与的取值应在外层函数的定义域内.20、(1),;(2)时,.【解析】

(1)由扇形的半径为,在中,,则,利用正弦定理求出、,从而可得出函数;(2)利用三角恒等变换思想,可得出,,利用正弦函数的单调性与最值即可求出的最大值.【详解】(1)由于扇形的半径为,,在中,,由正弦定理,,同理.,;(2),.,,当,即时,.【点睛】本题考查三角函数的实际应用,考查正弦定理与三角恒等变换思想的应用,解题的关键就是利用三角恒等变换思想将三角函数解析式化简,考查分析问题和解决问题的能力,属于中等题.21、(Ⅰ),函数的增区间为.(Ⅱ)【解析】

(Ⅰ)利用三角函数恒等变换化简函数的解析式,再利用正弦函数的周期性、单调性,即可求得结论;(Ⅱ)由题意,函

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论