河南省平顶山市江河中学高二数学理测试题含解析_第1页
河南省平顶山市江河中学高二数学理测试题含解析_第2页
河南省平顶山市江河中学高二数学理测试题含解析_第3页
河南省平顶山市江河中学高二数学理测试题含解析_第4页
河南省平顶山市江河中学高二数学理测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南省平顶山市江河中学高二数学理测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.如果函数y=f(x)的图象如下图,那么导函数的图象可能是()A. B. C. D.参考答案:A试题分析:单调变化情况为先增后减、再增再减因此的符号变化情况为大于零、小于零、大于零、小于零,四个选项只有A符合,故选A.考点:1、函数的单调性与导数的关系;2、函数图象的应用.【方法点晴】本题通过对多个图象的选择考查函数的解析式、定义域、值域、单调性,导数的应用以及数学化归思想,属于难题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及时函数图象的变化趋势,利用排除法,将不合题意选项一一排除.2.如果某地财政收入x(亿元)与支出y(亿元)满足线性回归方程=bx+a+e(单位:亿元),其中b=0.8,a=2,|e|≤0.5,如果今年该地区的财政收入为10亿元,则年支出预计不会超过()A.9亿元 B.9.5亿元 C.10亿元 D.10.5亿元参考答案:D【考点】线性回归方程.【分析】将所给数据代入y=bx+a+e,利用|e|≤0.5,即可求得结论.【解答】解:∵某地的财政收入x与支出y满足的线性回归模型是y=bx+a+e(单位:亿元),其中b=0.8,a=2,∴y=0.8x+2+e当x=10时,y=0.8x+2+e=10+e∵|e|≤0.5,∴﹣0.5≤e≤0.5∴9.5≤y≤10.5,∴今年支出预计不超出10.5亿元故选D.3.定义为n个正数p1,p2,…pn的“均倒数”.若已知数列{an}的前n项的“均倒数”为,又,则=()A. B. C. D.参考答案:C【考点】类比推理.【专题】新定义;点列、递归数列与数学归纳法.【分析】由已知得a1+a2+…+an=n(2n+1)=Sn,求出Sn后,利用当n≥2时,an=Sn﹣Sn﹣1,即可求得通项an,最后利用裂项法,即可求和.【解答】解:由已知得,∴a1+a2+…+an=n(2n+1)=Sn当n≥2时,an=Sn﹣Sn﹣1=4n﹣1,验证知当n=1时也成立,∴an=4n﹣1,∴,∴∴=+()+…+()=1﹣=.故选C.【点评】本题考查数列的通项与求和,考查裂项法的运用,确定数列的通项是关键.4.在平面直角坐标系中,点P的直角坐标为。若以圆点O为极点,轴半轴为极轴建立坐标系,则点P的极坐标可以是(

) A. B. C. D.参考答案:B略5.设F1、F2分别为双曲线﹣=1的左右焦点,M是双曲线的右支上一点,则△MF1F2的内切圆圆心的横坐标为()A.2 B.3 C.4 D.5参考答案:C【考点】双曲线的简单性质.【分析】根据双曲线的性质,利用切线长定理,再利用双曲线的定义,把|PF1|﹣|PF2|=6,转化为|HF1|﹣|HF2|=6,从而求得点H的横坐标.【解答】解:如图所示:F1(﹣5,0)、F2(5,0),设内切圆与x轴的切点是点H,PF1、PF2与内切圆的切点分别为M、N,∵由双曲线的定义可得|PF1|﹣|PF2|=2a=8,由圆的切线长定理知,|PM|=|PN|,故|MF1|﹣|NF2|=8,即|HF1|﹣|HF2|=8,设内切圆的圆心横坐标为x,则点H的横坐标为x,故(x+5)﹣(5﹣x)=8,∴x=4.故选:C.【点评】本题考查双曲线的定义、切线长定理,体现了转化的数学思想以及数形结合的数学思想,正确运用双曲线的定义是关键.6.“”是“函数在[1,+∞)上单调递增”的A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件参考答案:A【分析】求得函数的导数,由函数在上单调递增,转化为在恒成立,求得,再根据充要条件的判定,即可求解.【详解】由题意,函数,则,因为函数在上单调递增,则在恒成立,即在恒成立,即在恒成立,解得,所以“”是“在上单调递增”的充分不必要条件,故选A.【点睛】本题主要考查了导数的应用问题,其中解答中熟记函数的导数与原函数的关系,求得实数的取值范围,再根充要条件的判定方法求解是解答的关键,着重考查了推理与运算能力,属于中档试题.7.在区间[,2]上,函数f(x)=x2+px+q与g(x)=2x+在同一点取得相同的最小值,那么f(x)在[,2]上的最大值是(

)A.

B.

C.8

D.4参考答案:D略8.如图,在圆心角为,半径为1的扇形中,在弦AB上任取一点C,则的概率为(

).A.

B.

C.

D.参考答案:D9.定义在R上的函数既是奇函数又是周期函数,若的最小正周期是,且当时,,则的值为

A.

B.

C.

D.参考答案:C略10.某学校有教师150人,其中高级教师15人,中级教师45人,初级教师90人。现按职称分层抽样选出30名教师参加教工代表大会,则选出的高、中、初级教师的人数分别为(

) A、3,9,18

B、5,10,15

C、3,10,17

D、5,9,16参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11.以A表示值域为R的函数组成的集合,B表示具有如下性质的函数φ(x)组成的集合:对于函数φ(x),存在一个正数M,使得函数φ(x)的值域包含于区间[﹣M,M].例如,当φ1(x)=x3,φ2(x)=sinx时,φ1(x)∈A,φ2(x)∈B.现有如下命题:①设函数f(x)的定义域为D,则“f(x)∈A”的充要条件是“?b∈R,?a∈D,f(a)=b”;②函数f(x)∈B的充要条件是f(x)有最大值和最小值;③若函数f(x),g(x)的定义域相同,且f(x)∈A,g(x)∈B,则f(x)+g(x)?B.④若函数f(x)=aln(x+2)+(x>﹣2,a∈R)有最大值,则f(x)∈B.其中的真命题有.(写出所有真命题的序号)参考答案:①③④【考点】命题的真假判断与应用;充要条件;全称命题;特称命题;函数的值域.【分析】根据题中的新定义,结合函数值域的概念,可判断出命题①②③是否正确,再利用导数研究命题④中函数的值域,可得到其真假情况,从而得到本题的结论.【解答】解:(1)对于命题①,若对任意的b∈R,都?a∈D使得f(a)=b,则f(x)的值域必为R.反之,f(x)的值域为R,则对任意的b∈R,都?a∈D使得f(a)=b,故①是真命题;

(2)对于命题②,若函数f(x)∈B,即存在一个正数M,使得函数f(x)的值域包含于区间[﹣M,M].∴﹣M≤f(x)≤M.例如:函数f(x)满足﹣2<f(x)<5,则有﹣5≤f(x)≤5,此时,f(x)无最大值,无最小值,故②是假命题;

(3)对于命题③,若函数f(x),g(x)的定义域相同,且f(x)∈A,g(x)∈B,则f(x)值域为R,f(x)∈(﹣∞,+∞),并且存在一个正数M,使得﹣M≤g(x)≤M.故f(x)+g(x)∈(﹣∞,+∞).则f(x)+g(x)?B,故③是真命题;

(4)对于命题④,∵﹣≤≤,当a>0或a<0时,aln(x+2)∈(﹣∞,+∞),f(x)均无最大值,若要使f(x)有最大值,则a=0,此时f(x)=,f(x)∈B,故④是真命题.故答案为①③④.12.2010年广州亚运会组委会要从小张、小赵、小李、小罗、小王五名志愿者中选派四人分别从事翻译、导游、礼仪、司机四项不同工作,若其中小张和小赵只能从事前两项工作,其余三人均能从事这四项工作,则不同的选派方案共有()A.36种

B.12种

C.18种

D.48种参考答案:A13.已知双曲线的其中一条渐近线经过点(1,1),则该双曲线的右顶点的坐标为______,渐近线方程为______.参考答案:

的渐近线方程过点,,,右顶点为,渐近线方程为,即,故答案为(1),

(2).14.如图是半径为2,圆心角为的直角扇形OAB,Q为上一点,点P在扇形内(含边界),且,则的最大值为

.参考答案:415.原创)一大学生毕业找工作,在面试考核中,他共有三次答题机会(每次问题不同).假设他能正确回答每题的概率均为,规定有两次回答正确即通过面试,那么该生“通过面试”的概率为

.参考答案:略16.已知直线l1:ax+4y-2=0与直线l2:2x-5y+b=0互相垂直,垂足为(1,c),则c的值为_________. 参考答案:-2略17.抛物线x=ay2(a≠0)的准线方程是.参考答案:【考点】抛物线的简单性质.【分析】直接利用抛物线方程,化简求解即可.【解答】解:抛物线x=ay2(a≠0)的标准方程为:y2=x,准线方程:;故答案为:;三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本题满分15分)已知圆A:与x轴负半轴交于B点,过B的弦BE与y轴正半轴交于D点,且2BD=DE,曲线C是以A,B为焦点且过D点的椭圆.(1)求椭圆的方程;(2)点P在椭圆C上运动,点Q在圆A上运动,求PQ+PD的最大值.参考答案:解:(1)

………………

4分椭圆方程为

………………

7分(2)

………………10分=2

………………14分所以P在DB延长线与椭圆交点处,Q在PA延长线与圆的交点处,得到最大值为.

15分略19.已知函数.(1)若是函数的极值点,求的值;(2)求函数的单调区间.参考答案:(1)函数定义域为,

2分因为是函数的极值点,所以

解得或

4分经检验,或时,是函数的极值点,又因为a>0所以

6分(2)若,所以函数的单调递增区间为;若,令,解得当时,的变化情况如下表-0+极大值所以函数的单调递增区间是,单调递减区间是略20.(本小题满分12分)相关部门对跳水运动员进行达标定级考核,动作自选,并规定完成动作成绩在八分及以上的定为达标,成绩在九分及以上的定为一级运动员.已知参加此次考核的共有56名运动员.(1)考核结束后,从参加考核的运动员中随机抽取了8人,发现这8人中有2人没有达标,有3人为一级运动员,据此请估计此次考核的达标率及被定为一级运动员的人数;(2)经过考核,决定从其中的A、B、C、D、E五名一级运动员中任选2名参加跳水比赛(这五位运动员每位被选中的可能性相同).写出所有可能情况,并求运动员E被选中的概率.参考答案:(Ⅰ)依题意,估计此次考核的达标率为一级运动员约有(人)

(Ⅱ)依题意,从这五人中选2人的基本事件有:(A、B)(A、C)(A、D)(A、E)

(B、C)(B、D)(B、E)(C、D)(C、E)(D、E),共10个

其中“E被选中”包含:(A、E)(B、E)(C、E)(D

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论