大学物理实验丨利用小球弹跳声音研究碰撞恢复系数_第1页
大学物理实验丨利用小球弹跳声音研究碰撞恢复系数_第2页
大学物理实验丨利用小球弹跳声音研究碰撞恢复系数_第3页
大学物理实验丨利用小球弹跳声音研究碰撞恢复系数_第4页
大学物理实验丨利用小球弹跳声音研究碰撞恢复系数_第5页
已阅读5页,还剩1页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

大学物理实验之利用小球弹跳声音研究碰撞恢复系数实验目的1.研究碰撞过程中的能量损失。2.测量碰撞恢复系数,研究恢复系数与碰撞速度的关系。3.学习多种类型数据的处理方法。实验原理碰撞是一种常见的力学过程。在很多力学问题中碰撞所起的作用是非常重要甚至是决定性的,如多粒子系统的演化、航天器的交会对接、机械构件的连接间隙引起的冲击等等。因为碰撞时相互作用时间短、强度大,而且碰撞过程具有高度的复杂性和强烈的非线性,所以对碰撞过程的研究是重要又困难的,在实际应用中也有很大的价值。碰撞恢复系数是解决碰撞问题时引入的重要参数,如果只关心碰撞前后的运动状态而不用去了解碰撞过程中力的细节,就有可能通过恢复系数得到描述碰撞过程的代数方程而非微分方程,可以大大简化模型。如果能测量出只与材料相关的恢复系数的数值,力学系统的模拟计算和仿真就会较容易地实现。在简单的描述中,一般我们把碰撞分为完全弹性碰撞、完全非弹性碰撞和非完全弹性碰撞等几类,第一类是理想过程,第二类因为是完全的塑性形变属于特殊情况,所以实际的碰撞过程中我们主要讨论第三类——非完全弹性形变。在这种碰撞过程中,碰撞使得物体产生的形变基本是弹性的并在碰后基本完全恢复,但能量损失总是存在的,能量损失的来源可能是碰撞过程中的发声、碰撞体的振动、碰撞体的塑性形变以及粘弹性恢复导致的发热等等,所以碰撞造成的变化不可能完全恢复,或者说恢复系数不等于1。恢复系数(CoefficientofRestitution)可以从几个角度来给出定义,即运动学COR(速度)、动力学COR(冲量)和能量COR。这里我们只讨论近刚体的小球正碰情况下的运动学COR,定义为两个小球碰撞时的相对分离速度与相对接近速度之比:其中下标1、2表示第一和第二个小球,下标i表示初态(碰前),f表示末态(碰后)。如果讨论的是小球与刚性壁的碰撞,如小球落下时与刚性地面的碰撞,则(1)式简化为(只考虑速度的大小):一般来说,COR除了与碰撞体的材料性质有关外,还与碰撞时的速度有关,特别是各种高分子材料(粘弹性材料)的碰撞体,碰撞速度越大,能量损失的比率也越大,因而COR越小。但是COR与碰撞速度的关系是很复杂的,不同的材料和不同的表面性状等等都会影响结果。本实验通过小球垂直下落与地面碰撞的运动过程来研究COR与速度的关系。小球垂直下落至地面被反弹、再下落再被反弹……,小球的被弹起的速度将会逐渐减小,我们通过测量小球在空中飞行的时间来测量速度的变化,从而得到COR。在本实验中不考虑空气阻力带来的影响。实际上,小球从约2m的高度落下时,空气阻力导致的能量损耗要比碰撞导致的能量损失低约两个数量级。同学们可以自行用理论或实验方法进行研究,例如:(1)在运动方程中加入空气阻力项(与速度或速度平方成正比,方向相反),根据空气的粘滞系数和小球的直径可得到阻力的表达式,由此可计算阻力带来的速度损失;(2)在一竖直标尺旁让小球自由落下,拍摄下落过程,然后用视频分析软件如Tracker进行处理,可得到各时刻小球的速度,与自由落体(无阻力)过程进行比较;(3)使用Phyphox软件的功能研究小球下落的运动,等等。假定小球第n次弹起的时刻记为tn,弹起的速度记为vn,不考虑空气阻力,再下落至地面时速度仍为vn;小球第n+1次弹起的时刻记为tn+1,弹起的速度记为vn+1,……小球在第n次弹起至第n+1次弹起的过程中飞行的时间为Tn=tn+1−tn,可得:如何测量小球落下的时刻呢?本实验采用录制小球弹跳过程的音频,然后对数据进行分析的方法来确定小球弹跳过程中的每个时刻tn。实验装置一个弹性较好的乒乓球,三种不同材质的光滑且硬度较高的水平板面(瓷砖地面、木板、人造纤维/密度板)(如下图),一部智能手机。实验过程打开手机的录音功能,在三种不同的光滑且硬度高的版面让小球从2m左右的高度落下,小球每次与地面的碰撞都会发出响声,整个过程都会被音频文件记录下来,过程中请保持安静。一般说来,小球会与地面碰撞数十次,但后面的碰撞间隔过短,受数据记录方式所限,误差较大,所以有效的数据主要是前面的十几次碰撞过程。因而三种不同的材质板面可以得到三个不同的录音文件。数据记录下面是对应的三种材质板面的录音截屏(图1:瓷砖地板;图2:木质地板;图3:人造纤维/密度板(书桌面))123数据处理及结果将音频文件保存,然后发送至电脑,使用Origin处理数据。因为Origin只能处理.wav格式的音频文件,而录音文件的文件格式为m4a.格式,则通过在线的“m4a转换成wav”转换器将三个文件转换为wav文件。(1)兵乓球与瓷砖地板碰撞打开Origin,导入“瓷砖地板1”录音文件,文件格式为wav,在数据表上部可以看到所录音频的采样间隔(如6.25×10-5s)数据表中有四列,第一列是左声道数据,第二列是右声道数据,第三列是总声强。我们处理第三列数据,画出其折线图,如图(4)所示,每一个细锐的峰值所在的横坐标就表示碰撞发生的时刻。(4)使用Origin的“数据读取器”,将其对准峰值点,取前12个峰值点所获得的横坐标值填入新建的数据表。现在我们得到了所有tn的数据点,如下表。新建一列,数据值设为时间差:Tn=tn+1−tn;再新建一列,数据为COR:en=Tn+1/Tn。可以画出相关的曲线进行观察分析,如图(5)为Tn~n,图(6)为en~Tn(意义相近于en~vn)。尝试对数据进行拟合,找出其中的规律,并给出你的结论。弹跳次数123456789101112tn(s)3.7604.7205.5106.2006.8007.3307.8108.2508.6509.0209.3659.690Tn(s)0.9600.7900.6900.6000.5300.4800.4400.4000.3700.3450.325en0.8230.8730.870.8830.9060.9170.910.9250.9330.942(5)(6)结论:由图(6)可得兵乓球与瓷砖地板的碰撞恢复系数en处于0.82-0.95之间小于1,且时间差越小即碰撞速度越大,碰撞恢复系数越大,兵乓球碰撞恢复程度越大。(2)兵乓球与木板碰撞打开Origin,导入“木板”录音文件,文件格式为wav,在数据表上部可以看到所录音频的采样间隔(如6.25×10-5s)数据表中有四列,第一列是左声道数据,第二列是右声道数据,第三列是总声强。我们处理第三列数据,画出其折线图,如图(7)所示,每一个细锐的峰值所在的横坐标就表示碰撞发生的时刻。使用Origin的“数据读取器”,将其对准峰值点,取前12个峰值点所获得的横坐标值填入新建的数据表。现在我们得到了所有tn的数据点,如下表。新建一列,数据值设为时间差:Tn=tn+1−tn;再新建一列,数据为COR:en=Tn+1/Tn。可以画出相关的曲线进行观察分析,如图(8)为Tn~n,图(9)为en~Tn(意义相近于en~vn)。尝试对数据进行拟合,找出其中的规律,并给出你的结论。弹跳次数123456789101112tn(s)3.6104.4705.1805.7706.2806.7307.1407.5007.8208.0958.3708.625Tn(s)0.8600.7100.5900.5100.4500.4000.3600.3200.2950.2750.255en0.8260.8300.8640.8820.8890.9000.8890.9220.9320.928(8)(9)结论:由图(9)可得兵乓球与木板的碰撞恢复系数en处于0.82-0.953之间小于1,且时间差越小即碰撞速度越大,碰撞恢复系数越大,兵乓球碰撞恢复程度越大。(3)兵乓球与人造纤维/密度板碰撞打开Origin,导入“小书桌”录音文件,文件格式为wav,在数据表上部可以看到所录音频的采样间隔(如6.25×10-5s)数据表中有四列,第一列是左声道数据,第二列是右声道数据,第三列是总声强。我们处理第三列数据,画出其折线图,如图(10)所示,每一个细锐的峰值所在的横坐标就表示碰撞发生的时刻。(10)使用Origin的“数据读取器”,将其对准峰值点,取前12个峰值点所获得的横坐标值填入新建的数据表。现在我们得到了所有tn的数据点,如下表。新建一列,数据值设为时间差:Tn=tn+1−tn;再新建一列,数据为COR:en=Tn+1/Tn。可以画出相关的曲线进行观察分析,如图(11)为Tn~n,图(12)为en~Tn(意义相近于en~vn)。尝试对数据进行拟合,找出其中的规律,并给出你的结论。弹跳次数123456789101112tn(s)4.3905.3006.0306.6207.1207.5507.9258.2498.5328.7859.0109.210Tn(s)0.9100.7300.5900.5000.4300.3750.3250.2850.2550.2250.200en0.8020.8080.8470.8600.8720.8670.8760.8940.8830.889(11)(12)结论:由图(12)可得兵乓球与人造纤维密度板的碰撞恢复系数en处于0.80-0.90之间且小于1,且时间差越小即碰撞速度越大,碰撞恢复系数越大,兵乓球碰撞恢复程度越大。实验总结论:通过以上对兵乓球和三种不同材质的板面发生碰撞的数据分析,可以得出:兵乓球与板面相邻两次碰撞的时间差越小即碰撞速度越大,碰撞恢复系数越大,兵乓球碰撞恢复到原来的运动情况的程度越大。同时,兵乓球与不同板面发生碰撞的碰撞恢复系数不同,以以上三种材质的板面为例可以推出兵乓球与不同材质板面的碰撞恢复系数大小关系为“e瓷砖地板>e木板>e人造密度板”。误差来源分析:1)兵乓球由于质量较轻而体积较大(质体比较小)而受到空气阻力因素影响较大;2)由于兵乓球由人手释放而难以控制,手的微小抖动可能使球被释放瞬间具有微小的水平方向上的速度,造成球与

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论