版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.从装有4个红球和3个白球的袋中任取2个球,那么下列事件中,是对立事件的是()A.至少有1个白球;都是红球 B.至少有1个白球;至少有1个红球C.恰好有1个白球;恰好有2个白球 D.至少有1个白球;都是白球2.若直线平分圆的周长,则的值为()A.-1 B.1 C.3 D.53.已知数列的前4项依次为,1,,,则该数列的一个通项公式可以是()A. B.C. D.4.已知平面向量,,若与同向,则实数的值是()A. B. C. D.5.已知实数满足且,则下列关系中一定正确的是()A. B. C. D.6.函数的部分图像如图所示,则当时,的值域是()A. B.C. D.7.已知实数,满足,,且,,成等比数列,则有()A.最大值 B.最大值 C.最小值 D.最小值8.直线x+y+2=0分别与x轴,y轴交于A,B两点,点P在圆(x﹣2)2+y2=2上,则△ABP面积的最小值为()A.1 B.2 C. D.9.已知变量和满足相关关系,变量和满足相关关系.下列结论中正确的是()A.与正相关,与正相关 B.与正相关,与负相关C.与负相关,与y正相关 D.与负相关,与负相关10.已知向量,且,则的值为()A.6 B.-6 C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,对于下列说法:①要得到的图象,只需将的图象向左平移个单位长度即可;②的图象关于直线对称:③在内的单调递减区间为;④为奇函数.则上述说法正确的是________(填入所有正确说法的序号).12.某公司调查了商品的广告投入费用(万元)与销售利润(万元)的统计数据,如下表:广告费用(万元)销售利润(万元)由表中的数据得线性回归方程为,则当时,销售利润的估值为___.(其中:)13.平面四边形中,,则=_______.14.设为实数,为不超过实数的最大整数,如,.记,则的取值范围为,现定义无穷数列如下:,当时,;当时,,若,则________.15.设为正偶数,,则____________.16.已知数列的通项公式,那么使得其前项和大于7.999的的最小值为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,其中.解关于x的不等式;求a的取值范围,使在区间上是单调减函数.18.已知函数.(1)求的最小正周期;(2)求的单调增区间;(3)若,求的最大值与最小值.19.已知,是第四象限角,求和的值.20.如图所示,在平面四边形中,为正三角形.(1)在中,角的对边分别为,若,求角的大小;(2)求面积的最大值.21.已知偶函数.(1)若方程有两不等实根,求的范围;(2)若在上的最小值为2,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
根据对立事件的定义判断.【详解】从装有4个红球和3个白球的袋内任取2个球,在A中,“至少有1个白球”与“都是红球”不能同时发生且必有一个事件会发生,是对立事件.在B中,“至少有1个白球”与“至少有1个红球”可以同时发生,不是互斥事件.在C中,“恰好有1个白球”与“恰好有2个白球”是互斥事件,但不是对立事件.在D中,“至少有1个白球”与“都是白球”不是互斥事件.故选:A.2、D【解析】
求出圆的圆心坐标,由直线经过圆心代入解得.【详解】解:所以的圆心为因为直线平分圆的周长所以直线过圆心,即解得,故选:D.【点睛】本题考查直线与圆的位置关系的综合应用,属于基础题.3、A【解析】
根据各选择项求出数列的首项,第二项,用排除法确定.【详解】可用排除法,由数列项的正负可排除B,D,再看项的绝对值,在C中不合题意,排除C,只有A.可选.故选:A.【点睛】本题考查数列的通项公式,已知数列的前几项,选择一个通项公式,比较方便,可以利用通项公式求出数列的前几项,把不合的排除即得.4、D【解析】
通过同向向量的性质即可得到答案.【详解】与同向,,解得或(舍去),故选D.【点睛】本题主要考查平行向量的坐标运算,但注意同向,难度较小.5、D【解析】
由已知得,然后根据不等式的性质判断.【详解】由且,,由得,A错;由得,B错;由于可能为0,C错;由已知得,则,D正确.故选:D.【点睛】本题考查不等式的性质,掌握不等式性质是解题关键,特别是性质:不等式两同乘以一个正数,不等号方向不变,不等式两边同乘以一个负数,不等号方向改变.6、D【解析】如图,,得,则,又当时,,得,又,得,所以,当时,,所以值域为,故选D.点睛:本题考查由三角函数的图象求解析式.本题中,先利用周期求的值,然后利用特殊点(一般从五点内取)求的值,最后根据题中的特殊点求的值.值域的求解利用整体思想.7、C【解析】试题分析:因为,,成等比数列,所以可得,有最小值,故选C.考点:1、等比数列的性质;2、对数的运算及基本不等式求最值.8、B【解析】
求得圆心到直线的距离,减去圆的半径,求得△ABP面积的最小时,三角形的高,由此求得△ABP面积的最小值.【详解】依题意设,故.圆的圆心为,半径为,所以圆上的点到直线的距离的最小值为(其中为圆心到直线的距离),所以△ABP面积的最小值为.故选:B【点睛】本小题主要考查圆上的点到直线的距离的最小值的求法,考查三角形面积的最值的求法,属于基础题.9、B【解析】
根据相关关系式,由一次项系数的符号即可判断是正相关还是负相关.【详解】变量和满足相关关系,由可知变量和为正相关变量和满足相关关系,由,可知变量和为负相关所以B为正确选项故选:B【点睛】本题考查了通过相关关系式子判断正负相关性,属于基础题.10、A【解析】
两向量平行,內积等于外积。【详解】,所以选A.【点睛】本题考查两向量平行的坐标运算,属于基础题。二、填空题:本大题共6小题,每小题5分,共30分。11、②④【解析】
结合三角函数的图象与性质对四个结论逐个分析即可得出答案.【详解】①要得到的图象,应将的图象向左平移个单位长度,所以①错误;②令,,解得,,所以直线是的一条对称轴,故②正确;③令,,解得,,因为,所以在定义域内的单调递减区间为和,所以③错误;④是奇函数,所以该说法正确.【点睛】本题考查了正弦型函数的对称轴、单调性、奇偶性与平移变换,考查了学生对的图象与性质的掌握,属于中档题.12、12.2【解析】
先求出,的平均数,再由题中所给公式计算出和,进而得出线性回归方程,将代入,即可求出结果.【详解】由题中数据可得:,,所以,所以,故回归直线方程为,所以当时,【点睛】本题主要考查线性回归方程,需要考生掌握住最小二乘法求与,属于基础题型.13、【解析】
先求出,再求出,再利用余弦定理求出AD得解.【详解】依题意得中,,故.在中,由正弦定理可知,,得.在中,因为,故.则.在中,由余弦定理可知,,即.得.【点睛】本题主要考查正弦定理余弦定理解三角形,意在考查学生对这些知识的理解掌握水平,属于中档题.14、【解析】
根据已知条件,计算数列的前几项,观察得出无穷数列呈周期性变化,即可求出的值。【详解】当时,,,,,……,无穷数列周期性变化,周期为2,所以。【点睛】本题主要考查学生的数学抽象能力,通过取整函数得到数列,观察数列的特征,求数列中的某项值。15、【解析】
得出的表达式,然后可计算出的表达式.【详解】,,因此,.故答案为:.【点睛】本题考查数学归纳法的应用,考查项的变化,考查计算能力,属于基础题.16、1【解析】
直接利用数列的通项公式,建立不等式,解不等式求出结果.【详解】解:数列的通项公式,则:,所以:当时,即:,当时,成立,即:的最小值为1.故答案为:1【点睛】本题考查的知识要点:数列的通项公式的求法及应用,主要考查学生的运算能力和转化能力,属于基础题型.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2).【解析】
由题意可得,对a讨论,可得所求解集;求得,由反比例函数的单调性,可得,解不等式即可得到所求范围.【详解】的不等式,即为,即为,当时,解集为;当时,解集为;当时,解集为,;,由在区间上是单调减函数,可得,解得.即a的范围是.【点睛】本题考查分式不等式的解法,注意运用分类讨论思想方法,考查函数的单调性的判断和运用,考查运算能力,属于基础题.18、(1);(2)[kπ﹣,kπ+],k∈Z;(3)f(x)=2,f(x)=﹣1【解析】
(1)利用三角恒等变换,化简函数的解析式,再利用正弦函数的周期性,得出结论;(2)利用正弦函数的单调性,求出f(x)的单调增区间;(3)利用正弦函数的定义域和值域,求得当时,f(x)的最大值与最小值.【详解】(1)∵函数f(x)=sin4x+2sinxcosx﹣cos4x=(sin4x﹣cos4x)+sin2x=﹣cos2x+sin2x=2sin(2x﹣),∴f(x)的最小正周期为=π.(2)令2kπ﹣≤2x﹣≤2kπ+,求得kπ﹣≤x≤kπ+,可得f(x)的单调增区间为[kπ﹣,kπ+],k∈Z.(3)若,则2x﹣∈,当2x﹣=时,f(x)=2;当2x﹣=﹣时,f(x)=.【点睛】本题主要考查三角恒等变换,正弦函数的周期性、单调性,正弦函数的定义域和值域,属于中档题.19、,【解析】
利用诱导公式可求的值,根据是第四象限角可求的值,最后根据三角函数的基本关系式可求的值,根据诱导公式及倍角公式可求的值.【详解】,又是第四象限角,所以,所以,.【点睛】本题考查同角的三角函数的基本关系式、诱导公式以及二倍角公式,此题属于基础题.20、(1);(2).【解析】
(1)由正弦和角公式,化简三角函数表达式,结合正弦定理即可求得角的大小;(2)在中,设,由余弦定理及正弦定理用表示出.再根据三角形面积公式表示出,即可结合正弦函数的图像与性质求得最大值.【详解】(1)由题意可得:∴整理得∴∴∴又∴(2)在中,设,由余弦定理得:,∵为正三角形,∴,在中,由正弦定理得:,∴,∴,∵,∵,∴为锐角,,,,∵∴当时,.【点睛】本题考查了三角函数式的化简变形,正弦定理与余弦定理在解三角形中的应用,三角形面积的表示方法,正弦函数的图像与性质的综合应用,属于中档题.21、(1);(2)或.【解析】
(1)由偶函数的定义,利用,求得的值,再由对数函数的单调性,结合题设条件,即可求解实数的范围;(2)利用换元法和对勾函数的单调性,以及二次函数的闭区间上的求法,分类讨论对称轴和区间的关系,即可求解.【详解】(1)因为,所以的定义域为,因为是偶函数,即,所以,故,所以,即方程的解为一切实数,所以,因为,且,所以原方程转化为,令,,所以所以在上是减函数,是增函数,当时,使
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 药品集中招标合作协议样本
- 学校网络升级国防光缆施工合同
- 养殖行业培训租赁协议
- 退休工程师技术支持合同
- 机场航站楼幕墙安装协议
- 舞蹈室租赁合同
- 酒店屋顶防水维护服务合同
- 医疗卫生合作的经济合同管理办法
- 暂停职务留薪协议
- 博物馆展区铁艺栏杆施工合同
- 2024年网格员考试题库1套
- 2024年共青团入团积极分子考试题库及答案
- 2024年职业技能“大数据考试”专业技术人员继续教育考试题库与答案
- 江苏高职单招报考指南
- 心脏介入手术配合
- 学生骑车安全承诺书
- 战争与和平-美术作品反映战争 课件-2023-2024学年高中美术湘美版(2019)美术鉴赏
- 核电站寿命评估技术
- 2023-2024学年辽宁省大连市名校联盟八年级(上)联考生物试卷(含解析)
- 有色金属熔炼与铸锭课件
- 阻生牙拔除的护理
评论
0/150
提交评论