版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021年重庆涪陵第二十中学高二数学理模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.设变量x,y满足约束条件,则目标函数z=2x+3y的最小值为 ().A.6
B.7
C.8
D.23参考答案:B略2.已知
(
)
A.-15
B.-5
C.-3
D.-1
参考答案:A略3.若集合≤3,,≤0,,则(
)
A.“”是“”的充分条件但不是必要条件
B.“”是“”的必要条件但不是充分条件
C.“”是“”的充要条件
D.“”既不是“”的充分条件,也不是“”的必要条件参考答案:B略4.设定义在R上的函数满足以下两个条件:
(1)对成立;(2)当 则下列不等式关系中正确的是
(
) A. B. C. D.参考答案:A略5.已知△ABC的三个顶点为A(3,3,2),B(4,-3,7),C(0,5,1),则BC边上的中线长为
(
)A
2
B3
C4
D5参考答案:B略6.函数一定存在零点的区间是(
).A. B. C. D.参考答案:B∵在上单调递增,以上集合均属于,根据零点存在定理,∴,易知选项符合条件,∴选择.点睛:函数的零点问题,常根据零点存在性定理来判断,如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b)使得f(c)=0,
这个c也就是方程f(x)=0的根.由此可判断根所在区间.7.若函数是偶函数,则实数的值为
(A)
(B)
(C)
(D)参考答案:A8.设,则(
)A.
B.
C.
D.参考答案:A9.设f′(x)是函数f(x)的导函数,将y=f(x)和y=f′(x)的图象画在同一个直角坐标系中,不可能正确的是()A.B.C.D.参考答案:D10.已知是离心率为为双曲线的左、右焦点,点在上,,则(
)(A)
(B)
(C)
(D)参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11.从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图)。若要从身高在[120,130),[130,140),[140,150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为
.参考答案:312.以椭圆短轴的两个顶点为焦点,且过点A(4,﹣5)的双曲线的标准方程是.参考答案:【考点】双曲线的标准方程.【分析】求出椭圆短轴的两个顶点,可得双曲线的焦点,再利用双曲线的定义求出2a,即可求出双曲线的标准方程.【解答】解:椭圆短轴的两个顶点为(0,±3),∴双曲线的焦点为(0,±3).∵双曲线过点A(4,﹣5),∴2a==2,∴a=,∵c=3,∴b==2,∴所求双曲线的标准方程是.故答案为:.13.若存在两条直线都是曲线的切线则实数a的取值范围是(
)参考答案:(4,+∞)【分析】先令,由题意,将问题转化为至少有两个不等式的正实根,根据二次函数的性质结合函数的单调性,即可得出结果.【详解】令,由存在两条直线都是曲线的切线,可得至少有两个不等式的正实根,即有两个不等式的正实根,且两根记作,所以有,解得,又当时,曲线在点,处的切线分别为,,令,由得(不妨设),且当时,,即函数在上是单调函数,所以,所以直线,是曲线的两条不同的切线,所以实数的取值范围是.故答案为【点睛】本题主要考查由曲线的切线方程求参数的问题,熟记导数的几何意义、灵活掌握用导数研究函数单调性的方法即可,属于常考题型.14.已知点(﹣4,0)是椭圆kx2+3ky2=1的一个焦点,则k=.参考答案:【考点】K4:椭圆的简单性质.【分析】利用椭圆的焦点坐标,列出方程求解即可.【解答】解:点(﹣4,0)是椭圆kx2+3ky2=1的一个焦点,可得:,解得k=.故答案为:.15.(不等式选讲选做题)不等式|x2-3x-4|>x+1的解集为________
参考答案:16.离心率为的双曲线的渐近线方程为_______________.参考答案:∵双曲线的离心率为,即,令,则,故而可得,双曲线的渐近线方程为,即,故答案为.
17.已知,则________.(用含m的式子表示)参考答案:【分析】通过寻找,与特殊角的关系,利用诱导公式及二倍角公式变形即可。【详解】因为,即,所以,所以,所以,又.【点睛】本题主要考查诱导公式和二倍角公式的应用,意在考查学生分析解决问题的能力。三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.直线l:y=kx+1与双曲线C:2x2﹣y2=1.(1)若直线与双曲线有且仅有一个公共点,求实数k的取值范围;(2)若直线分别与双曲线的两支各有一个公共点,求实数k的取值范围.参考答案:【考点】双曲线的简单性质.【分析】将直线方程代入双曲线方程,化为关于x的方程,利用方程的判别式,即可求得k的取值范围.【解答】解:由题意,直线l:y=kx+1与双曲线C:2x2﹣y2=1,可得2x2﹣(kx+1)2=1,整理得(2﹣k2)x2﹣2kx﹣2=0.(1)只有一个公共点,当2﹣k2=0,k=±时,符合条件;当2﹣k2≠0时,由△=16﹣4k2=0,解得k=±2;(2)交于异支两点,<0,解得﹣<k<.【点评】本题考查直线与圆锥曲线的关系,解题的关键是将问题转化为方程根的问题,运用判别式解决,注意只有一个公共点时,不要忽视了与渐近线平行的情况,属于易错题.19.(10分)设函数f(x)=lnx+x2﹣2ax+a2,a∈R.(1)当a=2时,求函数f(x)的单调区间;(2)若函数f(x)在[1,3]上不存在单调增区间,求a的取值范围.参考答案:【考点】利用导数研究函数的单调性.【分析】(1)将a=2代入f(x),求出f(x)的导数,解关于导函数的不等式,求出函数的单调区间即可;(2)假设函数f(x)在[1,3]上不存在单调递增区间,必有g(x)≤0,得到关于a的不等式组,解出即可.【解答】解:(1)a=2时,f(x)=lnx+x2﹣4x+4,(x>0),f′(x)=+2x﹣4=,令f′(x)>0,解得:x>或x<,令f′(x)<0,解得:<x<,故f(x)在(0,)递增,在(,)递减,在(,+∞)递增;(2)f′(x)=+2x﹣2a=,x∈[1,3],设g(x)=2x2﹣2ax+1,假设函数f(x)在[1,3]上不存在单调递增区间,必有g(x)≤0,于是,解得:a≥.【点评】本题考查了函数的单调性问题,考查曲线的切线方程以及导数的应用,是一道中档题.20.(本小题满分12分)如图,的二面角的棱上有、两点,直线、分别在这个二面角的两个半平面内,且都垂直于.已知,,,求的长.参考答案:,所以的长为. …………………12分21.己知命题:椭圆,长轴在轴上.(Ⅰ)若椭圆焦距为4,求实数的值;(Ⅱ)命题:关于的不等式的解集是R;若“”是假命题,“”是真命题,求实数的取值范围。参考答案:略22.如图,在三棱锥P﹣ABC中,∠ABC=90°,PA⊥平面ABC,E,F分别为PB,PC的中点.(1)求证:EF∥平面ABC;(2)求证:平面AEF⊥平面PAB.参考答案:【考点】平面与平面垂直的判定;直线与平面平行的判定.【分析】(1)根据三角形中位线定理可得EF∥BC,进而根据线面平行的判定定理可得EF∥平面ABC;(2)根据PA⊥平面ABC,可得PA⊥BC,结合∠ABC=90°,及线面垂直的判定定理可得BC⊥平面PAB,进而由线面垂直的第二判定定理可得EF平面PAB,最后由面面垂直的判定定理可得平面AEF⊥平面PAB.【解答】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《动能和势能教学》课件
- 矿石运输与堆放技术
- 五年级数学(小数除法)计算题专项练习及答案汇编
- 《课件设计与应用》课件
- 2021年中国农业银行校园招聘考试押题1
- 2021年初级统计基础理论及相关知识考试题库及答案解析
- 食品安全培训课件资料
- 2021年初级程序员考试题库及答案解析
- 2023-2024学年吉林省长春五中高二(下)期末地理试卷
- 2025年高二化学寒假衔接讲练 (人教版)寒假预习-第12讲 芳香烃教师版
- 2024年酒店式公寓承包合同
- 猫抓病的护理
- 勘察设计工作内容
- GB/T 19799.2-2024无损检测超声检测试块第2部分:2号标准试块
- 2024-2025学年冀教新版八年级上册数学期末复习试卷(含详解)
- DB45T 1831-2018 汽车加油加气站防雷装置检测技术规范
- 《儿歌运用于幼儿园教育问题研究的文献综述》8600字
- 悬挂灯笼施工方案
- 水资源调配与优化-洞察分析
- 某自来水公司自然灾害应急预案样本(2篇)
- 无人机职业生涯规划
评论
0/150
提交评论