北京三中2023年高一数学第二学期期末质量跟踪监视试题含解析_第1页
北京三中2023年高一数学第二学期期末质量跟踪监视试题含解析_第2页
北京三中2023年高一数学第二学期期末质量跟踪监视试题含解析_第3页
北京三中2023年高一数学第二学期期末质量跟踪监视试题含解析_第4页
北京三中2023年高一数学第二学期期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的图象与函数的图象交点的个数为()A. B. C. D.2.关于x的不等式的解集中,恰有3个整数,则a的取值范围是()A. B. C. D.(4,5)3.下列条件:①;②;③;其中一定能推出成立的有()A.0个 B.3个 C.2个 D.1个4.设,,在,,…,中,正数的个数是()A.15 B.16 C.18 D.205.中,角的对边分别为,且,则角()A. B. C. D.6.某高校进行自主招生,先从报名者中筛选出400人参加笔试,再按笔试成绩择优选出100人参加面试.现随机抽取了24名笔试者的成绩,统计结果如下表所示.分数段[60,65)[65,70)[70,75)[75,80)[80,85)[85,90]人数234951据此估计允许参加面试的分数线大约是()A.90 B.85C.80 D.757.直线与直线平行,则实数a的值为()A. B. C. D.68.下列说法正确的是()A.小于的角是锐角 B.钝角是第二象限的角C.第二象限的角大于第一象限的角 D.若角与角的终边相同,则9.已知等差数列前n项的和为,,,则()A.25 B.26 C.27 D.2810.已知某地区中小学生人数和近视情况分别如图1和图2所示.为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取4%的学生进行调查,则样本容量和抽取的高中生近视人数分别为()A.400,40 B.200,10 C.400,80 D.200,20二、填空题:本大题共6小题,每小题5分,共30分。11.函数,函数,若对所有的总存在,使得成立,则实数的取值范围是__________.12.已知实数,满足不等式组,则的最大值为_______.13.已知直线与圆相交于两点,则______.14.数列满足:(且为常数),,当时,则数列的前项的和为________.15.某程序框图如图所示,则该程序运行后输出的S的值为________.16.函数的单调增区间为_________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,四棱锥P-ABCD的底面是矩形,PA⊥平面ABCD,E,F分别是AB,PD的中点,且PA=AD.(Ⅰ)求证:AF∥平面PEC;(Ⅱ)求证:平面PEC⊥平面PCD.18.眉山市位于四川西南,有“千载诗书城,人文第一州”的美誉,这里是大文豪苏轼、苏洵、苏辙的故乡,也是人们旅游的好地方.在今年的国庆黄金周,为了丰富游客的文化生活,每天在东坡故里三苏祠举行“三苏文化”知识竞赛.已知甲、乙两队参赛,每队3人,每人回答一个问题,答对者为本队赢得一分,答错得零分.假设甲队中每人答对的概率均为,乙队中3人答对的概率分别为,,,且各人回答正确与否相互之间没有影响.(1)分别求甲队总得分为0分;2分的概率;(2)求甲队得2分乙队得1分的概率.19.在中,角,,所对的边分别为,,,且.(Ⅰ)求角的大小;(Ⅱ)若的面积为,其外接圆的半径为,求的周长.20.平面四边形中,.(1)若,求;(2)设,若,求面积的最大值.21.在数列中,,,数列的前项和为,且.(1)证明:数列是等差数列.(2)若对恒成立,求的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

通过对两函数的表达式进行化简,变成我们熟悉的函数模型,比如反比例、一次函数、指数、对数及三角函数,看图直接判断【详解】由,作图如下:共6个交点,所以答案选择D【点睛】函数图象交点个数问题与函数零点、方程根可以作相应等价,用函数零点及方程根本题不现实,所以我们更多去考虑分别作图象,直接看交点个数.2、A【解析】

不等式等价转化为,当时,得,当时,得,由此根据解集中恰有3个整数解,能求出的取值范围。【详解】关于的不等式,不等式可变形为,当时,得,此时解集中的整数为2,3,4,则;当时,得,,此时解集中的整数为-2,-1,0,则故a的取值范围是,选:A。【点睛】本题难点在于分类讨论解含参的二次不等式,由于二次不等式对应的二次方程的根大小不确定,所以要对和1的大小进行分类讨论。其次在观察的范围的时候要注意范围的端点能否取到,防止选择错误的B选项。3、D【解析】

利用特殊值证得①②不一定能推出,利用平方差公式证得③能推出.【详解】对于①,若,而,故①不一定能推出;对于②,若,而,故②不一定能推出;对于③,由于,所以,故,也即.故③一定能推出.故选:D.【点睛】本小题主要考查不等式的性质,考查实数大小比较,属于基础题.4、D【解析】

根据数列的通项公式可判断出数列的正负,然后分析的正负,再由的正负即可确定出,,…,中正数的个数.【详解】当时,,当时,,因为,所以,因为,,所以取等号时,所以均为正,又因为,所以均为正,所以正数的个数是:.故选:D.【点睛】本题考查数列与函数综合应用,着重考查了推理判断能力,难度较难.对于数列各项和的正负,可通过数列本身的单调性周期性进行判断,从而为判断各项和的正负做铺垫.5、B【解析】

根据题意结合正弦定理,由题,可得三角形为等边三角形,即可得解.【详解】由题:即,中,由正弦定理可得:,即,两边同时平方:,由题,所以,即,所以,即为等边三角形,所以.故选:B【点睛】此题考查利用正弦定理进行边角互化,根据边的关系判断三角形的形状,求出三角形的内角.6、C【解析】

根据题意可从样本中数据的频率考虑,即按成绩择优选择频率为的,根据题意得到所选的范围后再求出对应的分数.【详解】由题意得,参加面试的频率为,结合表中的数据可得,样本中[80,90]的频率为,由样本估计总体知,分数线大约为80分.故选C.【点睛】本题考查统计图表的应用,解题的关键是理解题意,同时还要正确掌握统计中的常用公式,属于基础题.7、A【解析】

直接利用斜率相等列方程求解即可.【详解】因为直线与直线平行,所以,故选:A.【点睛】本题主要考查两直线平行的性质:斜率相等,属于基础题.8、B【解析】

可通过举例的方式验证选项的对错.【详解】A:负角不是锐角,比如“”的角,故错误;B:钝角范围是“”,是第二象限的角,故正确;C:第二象限角取“”,第一象限角取“”,故错误;D:当角与角的终边相同,则.故选B.【点睛】本题考查任意角的概念,难度较易.9、C【解析】

根据等差数列的求和与通项性质求解即可.【详解】等差数列前n项的和为,故.故.故选:C【点睛】本题主要考查了等差数列通项与求和的性质运用,属于基础题.10、A【解析】

由扇形图能得到总数,利用抽样比较能求出样本容量;由分层抽样和条形图能求出抽取的高中生近视人数.【详解】用分层抽样的方法抽取的学生进行调查,样本容量为:,抽取的高中生近视人数为:,故选A.【点睛】该题考查的是有关概率统计的问题,涉及到的知识点有扇形图与条形图的应用,以及分层抽样的性质,注意对基础知识的灵活应用,属于简单题目.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

分别求得f(x)、g(x)在[0,]上的值域,结合题意可得它们的值域间的包含关系,从而求得实数m的取值范围.【详解】∵f(x)=sin2x+(2cos2x﹣1)=sin2x+cos2x=2sin(2x+),当x∈[0,],2x+∈[,],∴2sin(2x+)∈[1,2],∴f(x)∈[1,2].对于g(x)=mcos(2x﹣)﹣2m+3(m>0),2x﹣∈[﹣,],mcos(2x﹣)∈[,m],∴g(x)∈[﹣+3,3﹣m].由于对所有的x2∈[0,]总存在x1∈[0,],使得f(x1)=g(x2)成立,可得[﹣+3,3﹣m]⊆[1,2],故有3﹣m≤2,﹣+3≥1,解得实数m的取值范围是[1,].故答案为.【点睛】本题考查两角和与差的正弦函数,着重考查三角函数的性质的运用,考查二倍角的余弦,解决问题的关键是理解“对所有的x2∈[0,]总存在x1∈[0,],使得f(x1)=g(x2)成立”的含义,转化为f(x)的值域是g(x)的子集.12、2【解析】

作出不等式组表示的平面区域,根据目标函数的几何意义,结合图象,即可求解,得到答案.【详解】由题意,作出不等式组表示的平面区域,如图所示,又由,即表示平面区域内任一点与点之间连线的斜率,显然直线的斜率最大,又由,解得,则,所以的最大值为2.【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.13、【解析】

首先求出圆的圆心坐标和半径,计算圆心到直线的距离,再计算弦长即可.【详解】圆,,圆心,半径.圆心到直线的距离..故答案为:【点睛】本题主要考查直线与圆的位置关系中的弦长问题,熟练掌握弦长公式为解题的关键,属于简单题.14、【解析】

直接利用分组法和分类讨论思想求出数列的和.【详解】数列满足:(且为常数),,当时,则,所以(常数),故,所以数列的前项为首项为,公差为的等差数列.从项开始,由于,所以奇数项为、偶数项为,所以,故答案为:【点睛】本题考查了由递推关系式求数列的性质、等差数列的前项和公式,需熟记公式,同时也考查了分类讨论的思想,属于中档题.15、1【解析】

根据程序框图,依次计算运行结果,发现输出的S值周期变化,利用终止运行的条件判断即可求解【详解】由程序框图得:S=1,k=1;第一次运行S=1第二次运行S=第三次运行S=1当k=2020,程序运行了2019次,2019=4×504+3,故S的值为1故答案为1【点睛】本题考查程序框图,根据程序的运行功能判断输出值的周期变化是关键,是基础题16、【解析】

先求出函数的定义域,再根据二次函数的单调性和的单调性,结合复合函数的单调性的判断可得出选项.【详解】因为,所以或,即函数定义域为,设,所以在上单调递减,在上单调递增,而在单调递增,由复合函数的单调性可知,函数的单调增区间为.故填:.【点睛】本题考查复合函数的单调性,注意在考虑函数的单调性的同时需考虑函数的定义域,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)见解析(Ⅱ)见解析【解析】

(Ⅰ)取PC的中点G,连结FG、EG,AF∥EG又EG⊂平面PCE,AF⊄平面PCE,AF∥平面PCE;(Ⅱ)由(Ⅰ)得EG∥AF,只需证明AF⊥面PDC,即可得到平面PEC⊥平面PCD.【详解】证明:(Ⅰ)取PC的中点G,连结FG、EG,∴FG为△CDP的中位线,FG∥CD,FG=CD.∵四边形ABCD为矩形,E为AB的中点,∴AE∥CD,AE=CD.∴FG=AE,FG∥AE,∴四边形AEGF是平行四边形,∴AF∥EG又EG⊂平面PCE,AF⊄平面PCE,∴AF∥平面PCE;(Ⅱ)∵PA=AD.∴AF⊥PDPA⊥平面ABCD,∴PA⊥CD,又因为CD⊥AB,AP∩AB=A,∴CD⊥面APD∴CD⊥AF,且PD∩CD=D,∴AF⊥面PDC由(Ⅰ)得EG∥AF,∴EG⊥面PDC又EG⊂平面PCE,∴平面PEC⊥平面PCD.【点睛】本题考查了空间线面平行、面面垂直的判定,属于中档题.18、(1)0分概率;2分概率;(2)【解析】

(1)记“甲队总得分为0分”为事件,“甲队总得分为2分”为事件,分析可知A事件三人都没有答对,按相互独立事件同时发生计算概率,B事件即甲队三人中有1人答错,其余两人答对,由n次独立事件恰有k次发生计算即可(2)记“乙队得1分”为事件,“甲队得2分乙队得1分”为事件,分别有互斥事件概率加法公式及相互独立事件乘法公式计算即可.【详解】(1)记“甲队总得分为0分”为事件,“甲队总得分为2分”为事件,甲队总得分为0分,即甲队三人都回答错误,其概率;甲队总得分为2分,即甲队三人中有1人答错,其余两人答对,其概率;(2)记“乙队得1分”为事件,“甲队得2分乙队得1分”为事件;事件即乙队三人中有2人答错,其余1人答对,则,甲队得2分乙队得1分即事件、同时发生,则.【点睛】本题主要考查了相互独立事件的概率计算,涉及n次独立事件中恰有k次发生的概率公式的应用,互斥事件的概率加法公式,属于中档题.19、(Ⅰ);(Ⅱ)【解析】

(Ⅰ)由由正弦定理得,进而得到,求得,即可求解;(Ⅱ)由(Ⅰ)和正弦定理,求得,再由余弦定理得,利用三角形的面积公式,求得,进而求得的值,得出三角形的周长.【详解】(Ⅰ)由题意,因为,由正弦定理,得,即,由,得,又由,则,所以,解得,又因为,所以.(Ⅱ)由(Ⅰ)知,且外接圆的半径为,由正弦定理可得,解得,由余弦定理得,可得,因为的面积为,解得,所以,解得:,所以的周长.【点睛】本题主要考查了三角恒等变换的应用,以及正弦定理、余弦定理和三角形的面积公式的应用,其中在解有关三角形的题目时,要抓住题设条件和利用某个定理的信息,合理应用正弦定理和余弦定理求解是解答的关键,着重考查了运算与求解能力,属于

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论