陕西省四校2022-2023学年数学高一第二学期期末质量跟踪监视试题含解析_第1页
陕西省四校2022-2023学年数学高一第二学期期末质量跟踪监视试题含解析_第2页
陕西省四校2022-2023学年数学高一第二学期期末质量跟踪监视试题含解析_第3页
陕西省四校2022-2023学年数学高一第二学期期末质量跟踪监视试题含解析_第4页
陕西省四校2022-2023学年数学高一第二学期期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.将正整数排列如下:则图中数2020出现在()A.第64行第3列 B.第64行4列 C.第65行3列 D.第65行4列2.设集合,则A. B. C. D.3.一个圆锥的表面积为,它的侧面展开图是圆心角为的扇形,该圆锥的母线长为()A. B.4 C. D.4.已知a=logA.a<b<c B.a<c<b C.c<a<b D.b<c<a5.若是异面直线,直线,则与的位置关系是()A.相交 B.异面 C.平行 D.异面或相交6.用数学归纳法证明1+a+a2+…+an+1=(a≠1,n∈N*),在验证n=1成立时,左边的项是()A.1 B.1+a C.1+a+a2 D.1+a+a2+a47.我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1500石,验得米内夹谷,抽样取米一把,数得250粒内夹谷30粒,则这批米内夹谷约为多少石?A.180 B.160 C.90 D.3608.直线x+2y﹣3=0与直线2x+ay﹣1=0垂直,则a的值为()A.﹣1 B.4 C.1 D.﹣49.若数列满足,,则()A. B. C.18 D.2010.已知等比数列的前项和为,若,则()A. B. C.5 D.6二、填空题:本大题共6小题,每小题5分,共30分。11.若等比数列满足,且公比,则_____.12.已知数列的通项公式为,则该数列的前1025项的和___________.13.若实数满足不等式组则的最小值是_____.14.已知数列满足,若对任意都有,则实数的取值范围是_________.15.已知:,则的取值范围是__________.16.分形几何学是美籍法国数学家伯努瓦.B.曼德尔布罗特在20世纪70年代创立的一门新学科,它的创立,为解决传统科学众多领域的难题提供了全新的思路,下图是按照一定的分形规律生长成一个数形图,则第13行的实心圆点的个数是________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.对于函数和实数,若存在,使成立,则称为函数关于的一个“生长点”.若为函数关于的一个“生长点”,则______.18.如图,墙上有一壁画,最高点离地面4米,最低点离地面2米,观察者从距离墙米,离地面高米的处观赏该壁画,设观赏视角(1)若问:观察者离墙多远时,视角最大?(2)若当变化时,求的取值范围.19.设数列,满足:,,,,.(1)写出数列的前三项;(2)证明:数列为常数列,并用表示;(3)证明:数列是等比数列,并求数列的通项公式.20.求下列方程和不等式的解集(1)(2)21.已知数列的前项和为,对任意满足,且,数列满足,,其前9项和为63.(1)求数列和的通项公式;(2)令,数列的前项和为,若存在正整数,有,求实数的取值范围;(3)将数列,的项按照“当为奇数时,放在前面;当为偶数时,放在前面”的要求进行“交叉排列”,得到一个新的数列:…,求这个新数列的前项和.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

根据题意,构造数列,利用数列求和推出的位置.【详解】根据已知,第行有个数,设数列为行数的数列,则,即第行有个数,第行有个数,……,第行有个数,所以,第行到第行数的总个数,当时,数的总个数,所以,为时的数,即行的数为:,,,,……,所以,为行第列.故选:B.【点睛】本题考查数列的应用,构造数列,利用数列知识求解很关键,属于中档题.2、B【解析】,选B.【考点】集合的运算【名师点睛】集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理.3、B【解析】

设圆锥的底面半径为,母线长为,利用扇形面积公式和圆锥表面积公式,求出圆锥的底面圆半径和母线长.【详解】设圆锥的底面半径为,母线长为它的侧面展开图是圆心角为的扇形又圆锥的表面积为,解得:母线长为:本题正确选项:【点睛】本题考查了圆锥的结构特征与应用问题,关键是能够熟练应用扇形面积公式和圆锥表面积公式,是基础题.4、B【解析】

运用中间量0比较a , c【详解】a=log20.2<log21=0,【点睛】本题考查指数和对数大小的比较,渗透了直观想象和数学运算素养.采取中间变量法,利用转化与化归思想解题.5、D【解析】

若为异面直线,且直线,则与可能相交,也可能异面,但是与不能平行,若,则,与已知矛盾,选项、、不正确故选.6、C【解析】

在验证时,左端计算所得的项,把代入等式左边即可得到答案.【详解】解:用数学归纳法证明,

在验证时,把当代入,左端.

故选:C.【点睛】此题主要考查数学归纳法证明等式的问题,属于概念性问题.7、A【解析】

根据数得250粒内夹谷30粒,根据比例,即可求得结论。【详解】设批米内夹谷约为x石,则,解得:选A。【点睛】此题考查简单随机抽样,根据部分的比重计算整体值。8、A【解析】

由两直线垂直的条件,列出方程即可求解,得到答案.【详解】由题意,直线与直线垂直,则满足,解得,故选:A.【点睛】本题主要考查了两直线位置关系的应用,其中解答中熟记两直线垂直的条件是解答的关键,着重考查了推理与运算能力,属于基础题.9、A【解析】

首先根据题意得到:是以首项为,公差为的等差数列.再计算即可.【详解】因为,所以是以首项为,公差为的等差数列.,.故选:A【点睛】本题主要考查等差数列的定义,熟练掌握等差数列的表达式是解题的关键,属于简单题.10、A【解析】

先通分,再利用等比数列的性质求和即可。【详解】.故选A.【点睛】本题考查等比数列的性质,属于基础题。二、填空题:本大题共6小题,每小题5分,共30分。11、.【解析】

利用等比数列的通项公式及其性质即可得出.【详解】,故答案为:1.【点睛】本题考查了等比数列的通项公式及其性质,考查了推理能力与计算能力,属于容易题.12、2039【解析】

根据所给分段函数,依次列举出当时的值,即可求得的值.【详解】当时,,当时,,,共1个2.当时,,,共3个2.当时,,,共7个2.当时,,,共15个2.当时,,,共31个2.当时,,,共63个2.当时,,,共127个2.当时,,,共255个2.当时,,,共511个2.当时,,,共1个2.所以由以上可知故答案为:2039【点睛】本题考查了分段函数的应用,由所给式子列举出各个项,即可求和,属于中档题.13、4【解析】试题分析:由于根据题意x,y满足的关系式,作出可行域,当目标函数z=2x+3y在边界点(2,0)处取到最小值z=2×2+3×0=4,故答案为4.考点:本试题主要考查了线性规划的最优解的运用.点评:解决该试题的关键是解决线性规划的小题时,常用“角点法”,其步骤为:①由约束条件画出可行域⇒②求出可行域各个角点的坐标⇒③将坐标逐一代入目标函数⇒④验证,求出最优解.14、【解析】

由题若对于任意的都有,可得解出即可得出.【详解】∵,若对任意都有,

∴.

∴,

解得.

故答案为.【点睛】本题考查了数列与函数的单调性、不等式的解法,考查了推理能力与计算能力,属于中档题.15、【解析】

由已知条件将两个角的三角函数转化为一个角的三角函数,再运用三角函数的值域求解.【详解】由已知得,所以,又因为,所以,解得,所以,故填.【点睛】本题考查三角函数的值域,属于基础题.16、【解析】

观察图像可知每一个实心圆点的下一行均分为一个实心圆点与一个空心圆点,每个空心圆点下一行均为实心圆点.再利用规律找到行与行之间的递推关系即可.【详解】由图像可得每一个实心圆点的下一行均分为一个实心圆点与一个空心圆点,每个空心圆点下一行均为实心圆点.故从第三行开始,每行的实心圆点数均为前两行之和.即.故第1到第13行中实心圆点的个数分别为:.故答案为:【点睛】本题主要考查了递推数列的实际运用,需要观察求得行与行之间的实心圆点的递推关系,属于中等题型.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、【解析】

由为函数关于的一个“生长点”,得到由诱导公式可得答案.【详解】解:为函数关于的一个“生长点”,,故答案为:.【点睛】本题主要考查利用诱导公式进行化简求值,及函数的创新题型,属于中档题.18、(1)(2)3≤x≤1.【解析】试题分析:(1)利用两角差的正切公式建立函数关系式,根据基本不等式求最值,最后根据正切函数单调性确定最大时取法,(2)利用两角差的正切公式建立等量关系式,进行参变分离得,再根据a的范围确定范围,最后解不等式得的取值范围.试题解析:(1)当时,过作的垂线,垂足为,则,且,由已知观察者离墙米,且,则,所以,,当且仅当时,取“”.又因为在上单调增,所以,当观察者离墙米时,视角最大.(2)由题意得,,又,所以,所以,当时,,所以,即,解得或,又因为,所以,所以的取值范围为.19、(1),,(2)证明见解析,(3)证明见解析,【解析】

(1)利用递推关系式直接求解即可.(2)由整理化简得,从而可证出结论.(3)首先由递推关系式证出,再由对数的运算性质以及等比数列的定义即可证出.利用【详解】(1),,;(2)证明:,∴为常数列4,即,∴;(3),∴是以为首项,2为公比的等比数列,∴.【点睛】本题考查了由数列的递推关系式研究数列的性质、等比数列的定义,属于中档题.20、(1)或;(2).【解析】

(1)先将方程变形得到,根据,得到,进而可求出结果;(2)由题意得到,求解即可得出结果.【详解】(1)由得,因为,所以,因此或;即原方程的解集为:或;(2)由得,即,解得:.故,原不等式的解集为:.【点睛】本题主要考查解含三角函数的方程,以及反三角函数不等式,熟记三角函数性质,根据函数单调性即可求解,属于常考题型.21、(1);(2);(3)【解析】试题分析:(1)由已知得数列是等差数列,从而易得,也即得,利用求得,再求得可得数列通项,利用已知可得是等差数列,由等差数列的基本量法可求得;(2)代入得,变形后得,从而易求得和,于是有,只要求得的最大值即可得的最小值

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论