安徽省铜陵市重点名校2022-2023学年数学高一第二学期期末学业水平测试模拟试题含解析_第1页
安徽省铜陵市重点名校2022-2023学年数学高一第二学期期末学业水平测试模拟试题含解析_第2页
安徽省铜陵市重点名校2022-2023学年数学高一第二学期期末学业水平测试模拟试题含解析_第3页
安徽省铜陵市重点名校2022-2023学年数学高一第二学期期末学业水平测试模拟试题含解析_第4页
安徽省铜陵市重点名校2022-2023学年数学高一第二学期期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若数列{an}是等比数列,且an>0,则数列也是等比数列.若数列是等差数列,可类比得到关于等差数列的一个性质为().A.是等差数列B.是等差数列C.是等差数列D.是等差数列2.长方体中,已知,,棱在平面内,则长方体在平面内的射影所构成的图形面积的取值范围是()A. B. C. D.3.设为等比数列的前n项和,若,,成等差数列,则()A.,,成等差数列 B.,,成等比数列C.,,成等差数列 D.,,成等比数列4.设,则比多了()项A. B. C. D.5.过点P(﹣2,m)和Q(m,4)的直线斜率等于1,那么m的值等于()A.1或3 B.4 C.1 D.1或46.将函数的图象向右平移个单位长度,所得图象对应的函数解析式是A. B. C. D.7.设实数满足约束条件,则的最大值为()A. B.9 C.11 D.8.在中,若,,,则()A., B.,C., D.,9.在平行四边形ABCD中,,,E是CD的中点,则()A.2 B.-3 C.4 D.610.各项不为零的等差数列中,,数列是等比数列,且,则()A.4 B.8 C.16 D.64二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数分别由下表给出:123211123321则当时,_____________.12.设偶函数的部分图像如图所示,为等腰直角三角形,,则的值为________.13.在正方体中,是棱的中点,则异面直线与所成角的余弦值为__________.14.设等比数列满足a1+a3=10,a2+a4=5,则a1a2…an的最大值为.15.关于函数,下列命题:①若存在,有时,成立;②在区间上是单调递增;③函数的图象关于点成中心对称图象;④将函数的图象向左平移个单位后将与的图象重合.其中正确的命题序号__________16.若a、b、c正数依次成等差数列,则的最小值为_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知等差数列的前n项和为,且,.(1)求;(2)求.18.2015年我国将加快阶梯水价推行,原则是“保基本、建机制、促节约”,其中“保基本”是指保证至少80%的居民用户用水价格不变.为响应国家政策,制定合理的阶梯用水价格,某城市采用简单随机抽样的方法分别从郊区和城区抽取5户和20户居民的年人均用水量进行调研,抽取的数据的茎叶图如下(单位:吨):(1)在郊区的这5户居民中随机抽取2户,求其年人均用水量都不超过30吨的概率;(2)设该城市郊区和城区的居民户数比为,现将年人均用水量不超过30吨的用户定义为第一阶梯用户,并保证这一梯次的居民用户用水价格保持不变.试根据样本估计总体的思想,分析此方案是否符合国家“保基本”政策.19.在某市高三教学质量检测中,全市共有名学生参加了本次考试,其中示范性高中参加考试学生人数为人,非示范性高中参加考试学生人数为人.现从所有参加考试的学生中随机抽取人,作检测成绩数据分析.(1)设计合理的抽样方案(说明抽样方法和样本构成即可);(2)依据人的数学成绩绘制了如图所示的频率分布直方图,据此估计本次检测全市学生数学成绩的平均分;20.已知圆的半径是2,圆心在直线上,且圆与直线相切.(1)求圆的方程;(2)若点是圆上的动点,点在轴上,的最大值等于7,求点的坐标.21.要测量底部不能到达的电视塔AB的高度,在C点测得塔顶A的仰角是45°,在D点测得塔顶A的仰角是30°,并测得水平面上的∠BCD=120°,CD="40"m,则电视塔的高度为多少?

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】试题分析:本题是由等比数列与等差数列的相似性质,推出有关结论:由“等比”类比到“等差”,由“几何平均数”类比到“算数平均数”;所以,所得结论为是等差数列.考点:类比推理.2、A【解析】

本题等价于求过BC直线的平面截长方体的面积的取值范围。【详解】长方体在平面内的射影所构成的图形面积的取值范围等价于,求过BC直线的平面截长方体的面积的取值范围。由图形知,,故选A.【点睛】将问题等价转换为可视的问题。3、A【解析】

先说明不符合题意,由时,成等差数列,算得,然后用表示出来,即可得到本题答案.【详解】设等比数列的公比为q,首项为,当时,有,不满足成等差数列;当时,因为成等差数列,所以,即,化简得,解得,所以,,,则成等差数列.故选:A【点睛】本题主要考查等差数列与等比数列的综合应用,计算出等比数列的公比是关键,考查计算能力,属于中等题.4、C【解析】

可知中共有项,然后将中的项数减去中的项数即可得出答案.【详解】,则中共有项,所以,比多了的项数为.故选:C.【点睛】本题考查数学归纳法的应用,解题的关键就是计算出等式中的项数,考查分析问题和解决问题的能力,属于中等题.5、C【解析】试题分析:利用直线的斜率公式求解.解:∵过点P(﹣2,m)和Q(m,4)的直线斜率等于1,∴k==1,解得m=1.故选C.考点:直线的斜率.6、B【解析】

利用三角函数图像平移原则,结合诱导公式,即可求解.【详解】函数的图象向右平移个单位长度得到.故选B.【点睛】本题考查三角图像变换,诱导公式,熟记变换原则,准确计算是关键,是基础题.7、C【解析】

由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【详解】作出约束条件表示的可行域如图,化目标函数为,联立,解得,由图可知,当直线过点时,z取得最大值11,故选:C.【点睛】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.8、A【解析】

利用正弦定理列出关系式,把与代入得出与的关系式,再与已知等式联立求出即可.【详解】∵在中,,,,∴由正弦定理得:,即,联立解得:.故选:A.【点睛】本题考查了正弦定理,以及特殊角的三角函数值,熟练掌握定理是解本题的关键,属于基础题.9、A【解析】

由平面向量的线性运算可得,再结合向量的数量积运算即可得解.【详解】解:由,,所以,,,则,故选:A.【点睛】本题考查了平面向量的线性运算,重点考查了向量的数量积运算,属中档题.10、D【解析】

根据等差数列性质可求得,再利用等比数列性质求得结果.【详解】由等差数列性质可得:又各项不为零,即由等比数列性质可得:本题正确选项:【点睛】本题考查等差数列、等比数列性质的应用,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、3【解析】

根据已知,用换元法,从外层求到里层,即可求解.【详解】令.故答案为:.【点睛】本题考查函数的表示,考查复合函数值求参数,换元法是解题的关键,属于基础题.12、【解析】的部分图象如图所示,为等腰直角三角形,,,函数是偶函数,,函数的解析式为,故答案为.【方法点睛】本题主要通过已知三角函数的图象求解析式考查三角函数的性质,属于中档题.利用最值求出,利用图象先求出周期,用周期公式求出,利用特殊点求出,正确求使解题的关键.求解析时求参数是确定函数解析式的关键,往往利用特殊点求的值,由特殊点求时,一定要分清特殊点是“五点法”的第几个点.13、【解析】

假设正方体棱长,根据//,得到异面直线与所成角,计算,可得结果.【详解】假设正方体棱长为1,因为//,所以异面直线与所成角即与所成角则角为如图,所以故答案为:【点睛】本题考查异面直线所成的角,属基础题.14、【解析】试题分析:设等比数列的公比为,由得,,解得.所以,于是当或时,取得最大值.考点:等比数列及其应用15、①③【解析】

根据题意,由于,根据函数周期为,可知①、若存在,有时,成立;正确,对于②、在区间上是单调递减;因此错误,对于③、,函数的图象关于点成中心对称图象,成立.对于④、将函数的图象向左平移个单位后得到,与的图象重合错误,故答案为①③考点:命题的真假点评:主要是考查了三角函数的性质的运用,属于基础题.16、1【解析】

由正数a、b、c依次成等差数列,则,则,再结合基本不等式求最值即可.【详解】解:由正数a、b、c依次成等差数列,则,则,当且仅当,即时取等号,故答案为:1.【点睛】本题考查了等差中项的运算,重点考查了基本不等式的应用,属基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】

(1)由可求得公差,利用等差数列通项公式求得结果;(2)利用等差数列前项和公式可求得结果.【详解】(1)设等差数列公差为,则,解得:(2)由(1)知:【点睛】本题考查等差数列通项公式和前项和的求解问题,考查基础公式的应用,属于基础题.18、(1)(2)符合【解析】

:(1)先列举出从5户郊区居民用户中随机抽取2户,其年人均用水量构成的所有基本事件,再列举其中年人均用水量都不超过30吨的基本事件,最后计算即可.(2)设该城市郊区的居民用户数为,则其城区的居民用户数为5a.依题意计算该城市年人均用水量不超过30吨的居民用户的百分率.【详解】解:(1)从5户郊区居民用户中随机抽取2户,其年人均用水量构成的所有基本事件是:(19,25),(19,28),(19,32),(19,34),(25,28),(25,32),(25,34),(28,32),(28,34),(32,34)共10个.其中年人均用水量都不超过30吨的基本事件是:(19,25),(19,28),(25,28)共3个.设“从5户郊区居民用户中随机抽取2户,其年人均用水量都不超过30吨”的事件为,则所求的概率为.(2)设该城市郊区的居民用户数为,则其城区的居民用户数为5a.依题意,该城市年人均用水量不超过30吨的居民用户的百分率为:.故此方案符合国家“保基本”政策.【点睛】本题考查了古典概型在实际生活中的应用,要紧扣题意从题目中抽象出数学计算的模型.19、(1)见解析;(2)92.4【解析】

(1)根据总体的差异性选择分层抽样,再结合抽样比计算出非示范性高中和示范性高中所抽取的人数;(2)将每个矩形底边的中点值乘以相应矩形的面积所得结果,再全部相加可得出本次测验全市学生数学成绩的平均分.【详解】(1)由于总体有明显差异的两部分构成,故采用分层抽样,由题意,从示范性高中抽取人,从非师范性高中抽取人;(2)由频率分布直方图估算样本平均分为推测估计本次检测全市学生数学平均分为【点睛】本题考查分层抽样以及计算频率分布直方图中的平均数,着重考查学生对几种抽样方法的理解,以及频率分布直方图中几个样本数字的计算方法,属于基础题.20、(1)或;(2)或.【解析】

(1)利用圆心在直线上设圆心坐标,利用相切列方程即可得解;(2)利用最大值为7确定圆,设点的坐标,找到到圆上点的最大距离列方程得解.【详解】解:(1)设圆心的坐标为,因为圆与直线相切,所以,即,解得或,故圆的方程为:,或;(2)由最大值等于可知,若圆的方程为,则的最小值为,故不故符合题意;所以圆的方程为:,设,则,的最大值为:,得,解得或.故点的坐标为或.【点睛】此题考查了圆方程的求法,点到圆上点的距离最值等,属于中档题.21、40m.【解析】试题分析:本题是解三角形的实际应用题,根据题意分析出图中的数据,即∠ADB=30°,∠ACB=45°,所以,可以

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论