版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省阳泉市第三中学2022年高一数学文模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.函数f(x)=sin2x与函数g(x)=2x的图象的交点的个数是() A.1 B.3 C.5 D.7参考答案:A【考点】正弦函数的图象. 【专题】三角函数的图像与性质. 【分析】在同一个坐标系中分别画出函数f(x)=sin2x与函数g(x)=2x的图象,数形结合可得它们的图象的交点个数. 【解答】解:在同一个坐标系中分别画出函数f(x)=sin2x与函数g(x)=2x的图象,如图所示, 结合图象可得它们的图象的交点个数为1, 故选:A. 【点评】本题主要考查正弦函数的图象特征,体现了数形结合的数学思想,属于基础题.2.已知函数在上是减函数,则的取值范围是(
)
A.
B.
C.或
D.
参考答案:D3.已知函数定义域为,则实数的取值范围是(
)
A.
B.
C.
D.参考答案:C略4.已知二元二次方程表示圆,则实数的取值范围为(
)A.
B.
C.
D.参考答案:A5.在空间直角坐标系中,已知,,则(
)A.
B.2
C.
D.参考答案:B6.将两个数a=8,b=17交换,使a=17,b=8,下面语句正确一组是(
)a=cc=bb=a
b=aa=b
c=bb=aa=c
a=bb=a
A.
B.
C.
D.
参考答案:B7.若函数y=f(x)为偶函数,且在(0,+∞)上是减函数,又f(3)=0,则的解集为()A.(﹣3,3) B.(﹣∞,﹣3)∪(3,+∞) C.(﹣3,0)∪(3,+∞) D.(﹣∞,﹣3)∪(0,3)参考答案:C【考点】奇偶性与单调性的综合.【专题】函数的性质及应用.【分析】利用函数的奇偶性将不等式进行化简,然后利用函数的单调性确定不等式的解集.【解答】解:因为y=f(x)为偶函数,所以,所以不等式等价为.因为函数y=f(x)为偶函数,且在(0,+∞)上是减函数,又f(3)=0,所以解得x>3或﹣3<x<0,即不等式的解集为(﹣3,0)∪(3,+∞).故选C.【点评】本题主要考查函数奇偶性的应用,利用数形结合的思想是解决本题的关键.8.(5分)函数f(x)=的定义域是() A. (0.e) B. (0,e] C. [e,+∞) D. (e,+∞)参考答案:B考点: 函数的定义域及其求法.专题: 函数的性质及应用.分析: 函数有意义,只需满足,解此不等式可得函数的定义域解答: 函数f(x)=的定义域的定义域为:解得0<x≤e.故函数的定义域为:(0,e],故选:B点评: 本题考查对数函数的图象和性质,是基础题.解题时要认真审题,仔细解答,注意合理地进行等价转化.9.集合M由正整数的平方组成,即M={1,4,9,16,25,…},若对某集合中的任意两个元素进行某种运算,运算结果仍在此集合中,则称此集合对该运算是封闭的,M对下列运算是封闭的是(
)A.加法 B.减法 C.乘法 D.除法参考答案:C【考点】元素与集合关系的判断.【专题】集合.【分析】根据对某集合中的任意两个元素进行某种运算,运算结果仍在此集合中,则称此集合对该运算是封闭的,利用排除法逐一判断即可.【解答】解:因为1+4=5?M,所以此集合对加法运算不是封闭的;因为4﹣1=3?M,所以此集合对减法运算不是封闭的;因为9÷4=2.25?M,所以此集合对除法运算不是封闭的;数列M={1,4,9,16,25,…}的通项公式为:,数列中任意两个数的积还是一个数的平方,它还在此集合中,所以此集合对乘法运算是封闭的.故选:C.【点评】本题主要考查了元素和集合之间的关系,考查了对“集合对该运算是封闭”的理解和运用,还考查了排除法的运用,属于基础题.10.设a=log3,b=()0.2,c=2,则()A.a<b<c B.c<b<a C.c<a<b D.b<a<c参考答案:A【考点】对数值大小的比较;指数函数单调性的应用.【分析】易知a<0
0<b<1
c>1故a<b<c【解答】解析:∵由指、对函数的性质可知:,,∴有a<b<c故选A.二、填空题:本大题共7小题,每小题4分,共28分11.已知实数满足,则的最大值为
.参考答案:412.已知两点A(-1,0),B(0,2),点C是圆上任意一点,则△ABC面积的最小值是______________.参考答案:13.若函数f(x)=,则f(log23)=()A.3 B.4 C.16 D.24参考答案:D【考点】对数的运算性质;函数的周期性;函数的值.【分析】先根据对数函数的性质判断log23的范围,代入相应的解析式求解,再判断所得函数值的范围,再代入对应解析式求解,利用对数的恒等式“=N”进行求解.【解答】解:∵log23<4,∴f(log23)=f(log23+3),∵log23+3>4,∴f(log23+3)===24.故选D.14.函数f(x)=的值域是.参考答案:(﹣∞,2]【考点】函数的值域.【专题】函数思想;定义法;函数的性质及应用.【分析】根据定义域的不同,求出对应解析式的值域即可得到f(x)的值域.【解答】解:∵函数f(x)=,当x≤1时,f(x)=2x,根据指数函数性质可知,f(x)是增函数,其值域为(0,2];当x>1时,f(x)=﹣x2+2x+1,根据二次函数性质可知,开口向下,对称轴x=1,其值域为(﹣∞,2);综上得函数f(x)=的值域为(﹣∞,2].故答案为(﹣∞,2].【点评】本题考查了分段函数的值域问题,注意定义域范围和相应的解析式.属于基础题.15.函数在区间[3,6]上的最大值是________;最小值是__________;参考答案:,16.若,则的值为_
参考答案:解:因为,则得到17.函数y=cos(x﹣)(x∈[,π])的最大值是,最小值是.参考答案:1,.【考点】三角函数的最值.【分析】根据x∈[,π],算出x﹣∈[﹣,],结合余弦函数的图象求出函数的最大值和最小值即可.【解答】解:∵x∈[,π],可得x﹣∈[﹣,],∴当x﹣=0时,即x=时,函数y=cos(x﹣)的最大值是1,当x﹣=,即x=时,函数y=cos(x﹣)的最小值是,故答案为:1,.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分10分)在△ABC中,内角A,B,C的对边分别为a,b,c,且bsinA=acosB.(1)求角B的大小;(2)若b=3,sinC=2sinA,求a,c的值.参考答案:(1)bsinA=acosB,由正弦定理可得,即得,.(2)sinC=2sinA,由正弦定理得,由余弦定理,,解得,.19.已知函数,其中.(1)当时,求f(x)的最小值;(2)设函数f(x)恰有两个零点,且,求a的取值范围.参考答案:(1)-14;(2)【分析】(1)当时,利用指数函数和二次函数的图象与性质,得到函数的单调性,即可求得函数的最小值;(2)分段讨论讨论函数在相应的区间内的根的个数,函数在时,至多有一个零点,函数在时,可能仅有一个零点,可能有两个零点,分别求出的取值范围,可得解.【详解】(1)当时,函数,当时,,由指数函数的性质,可得函数在上为增函数,且;当时,,由二次函数的性质,可得函数在上为减函数,在上为增函数,又由函数,当时,函数取得最小值为;故当时,最小值为.(2)因为函数恰有两个零点,所以(ⅰ)当时,函数有一个零点,令得,因为时,,所以时,函数有一个零点,设零点为且,此时需函数在时也恰有一个零点,令,即,得,令,设,,因为,所以,,,当时,,所以,即,所以在上单调递增;当时,,所以,即,所以在上单调递减;而当时,,又时,,所以要使在时恰有一个零点,则需,要使函数恰有两个零点,且,设在时的零点为,则需,而当时,,所以当时,函数恰有两个零点,并且满足;(ⅱ)若当时,函数没有零点,函数在恰有两个零点,且满足,也符合题意,而由(ⅰ)可得,要使当时,函数没有零点,则,要使函数在恰有两个零点,则,但不能满足,所以没有的范围满足当时,函数没有零点,函数在恰有两个零点,且满足,综上可得:实数的取值范围为.故得解.【点睛】本题主要考查了指数函数与二次函数的图象与性质的应用,以及函数与方程,函数的零点问题的综合应用,属于难度题,关键在于分析分段函数在相应的区间内的单调性,以及其图像趋势,可运用数形结合方便求解,注意在讨论二次函数的根的情况时的定义域对其的影响.20.在△ABC中,若,且,边上的高为,求角的大小与边的长参考答案:解析:
,联合
得,即
当时,当时,∴当时,当时,。21.将等差数列{}:中所有能被3或5整除的数删去后,剩下的数自小到大排成一个数列{},求的值.参考答案:解析:由于,故若是3或5的倍数,当且仅当是3或5的倍数。现将数轴正向分
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年酒店客房服务满意度提升单位合同范本3篇
- 二零二五年度网络安全防护服务 XXX合同协议补充协议2篇
- 二零二五年高管薪酬体系调整与执行合同3篇
- 2024版建设工程合同包括哪几种形式
- 二零二五年研发合作协议及其技术转让条款2篇
- 2024汽修场地租赁及维修设备采购合同范本2篇
- 二零二五年海南地区教育机构劳动合同示范文本3篇
- 2024年酒店式公寓共同开发协议
- 二零二五年度公益组织财务审计代理协议3篇
- 2024版山林土地租赁合同书范本
- 2023年浙江省温州市中考数学真题含解析
- 窗帘采购投标方案(技术方案)
- 司库体系建设
- 居间合同范本解
- 机电传动单向数控平台-矿大-机械电子-有图
- 妇科病盆腔炎病例讨论
- 人教版高中物理必修一同步课时作业(全册)
- 食堂油锅起火演练方案及流程
- 有余数的除法算式300题
- 五年级上册小数除法竖式计算练习300题及答案
- 【外资便利店在我国的经营策略分析案例:以日本罗森便利店为例11000字(论文)】
评论
0/150
提交评论