云南省昆明市安宁第三中学2022-2023学年高二数学文下学期期末试题含解析_第1页
云南省昆明市安宁第三中学2022-2023学年高二数学文下学期期末试题含解析_第2页
云南省昆明市安宁第三中学2022-2023学年高二数学文下学期期末试题含解析_第3页
云南省昆明市安宁第三中学2022-2023学年高二数学文下学期期末试题含解析_第4页
云南省昆明市安宁第三中学2022-2023学年高二数学文下学期期末试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省昆明市安宁第三中学2022-2023学年高二数学文下学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知椭圆:+=1,直线l:y=x+5,椭圆上任意点P,则点P到直线l的距离的最大值()A.3 B.2 C.3 D.2参考答案:A【考点】椭圆的简单性质.【分析】利用椭圆的参数方程,设出点P的坐标,再由点到直线的距离及辅助角公式,再由正弦函数的性质,即可求出P到直线l最大值.【解答】解:因为P是椭圆+=1上任意点,可设P(2cosθ,sinθ),其中θ∈[0,2π);因此点P到直线y=x+5,的距离是d==,其中tanα=;∴当sin(θ+α)=﹣1时,d取得最大值,点P到直线l的距离的最大值=3.故选A.2.已知函数,则不等式的解集是(

)A.[-2,1] B.[-1,2]C.(-∞,-1]∪[2,+∞) D.(-∞,-2]∪[1,+∞)参考答案:A【分析】先判断函数的奇偶性,将不等式化为,再由函数的单调得到,求解即可得出结果.【详解】因为函数,所以,因此函数为奇函数,所以化为,又在上恒成立,因此函数恒为增函数,所以,即,解得.故选A【点睛】本题主要考查函数奇偶性的应用、以及单调性的应用,熟记函数奇偶性的概念以及利用导数研究函数的单调性的方法即可,属于常考题型.3.已知为正整数,,实数满足,若的最大值为,则满足条件的数对的数目为(

)。

。参考答案:。因为,所以,于是有,因此。由于,得,其中的最大值当,时取到。又因为,所以满足条件的数对的数目为,选。4.我国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一直角边为股,斜边为弦。若a,b,c为直角三角形的三边,其中c为斜边,则,称这个定理为勾股定理.现将这一定理推广到立体几何中:在四面体O-ABC中,,S为顶点O所对面的面积,分别为侧面的面积,则下列选项中对于满足的关系描述正确的为(

)A. B.C. D.参考答案:C【分析】作四面体,,于点,连接,结合勾股定理可得答案。【详解】作四面体,,于点,连接,如图.即故选C.【点睛】本题主要考查类比推理,解题的关键是将勾股定理迁移到立体几何中,属于简单题。5.若曲线y=x4的一条切线l与直线x+4y-8=0垂直,则l的方程为()A.4x-y-3=0

B.x+4y-5=0

C.4x-y+3=0

D.x+4y+3=0参考答案:A6.已知,,若对任意的,存在,使,则m的取值范围是()A. B.[-8,+∞) C.[1,+∞) D.参考答案:D【分析】将问题转化为来列不等式,解不等式求得的取值范围.【详解】要使对任意的,存在,使,则需.当时,取得最解得小值为.当时,取得最小值为,故,解得,故选D.【点睛】本小题主要考查恒成立问题和存在性问题,考查函数最大值最小值的求法,考查化归与转化的数学思想方法,属于中档题.7.已知等比数列的前项和为,,,设,那么数列的前10项和为(

)A.

B.

C.50

D.55参考答案:D8.下列类比推理中,得到的结论正确的是

A.把与类比,则有

B.把长方体与长方形类比,则有长方体的对角线平方等于其长宽高的平方和

C.把与类比,则有

D.向量,的数量积运算与实数的运算类比,则有参考答案:B9.由图(1)有面积关系:,则由图(2)有体积关系:=

.参考答案:略10.已知椭圆的左、右焦点分别为F1、F2,过F2且斜率为1的直线l交椭圆C于A、B两点,则的内切圆半径为(

)A. B. C. D.参考答案:C分析:根据韦达定理结合三角形面积公式求出的面积,利用椭圆的定义求出三角形的周长,代入内切圆半径,从而可得结果.详解:椭圆的左、右焦点分别为,则的坐标为(1,0),过且斜率为1的直线为,即,代入,得,则,故的面积,的周长,故的内切圆半径,故选C.点睛:本题主要考查利用椭圆的简单性质与椭圆定义的应用,属于中档题.求解与椭圆性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、长轴、短轴、椭圆的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.二、填空题:本大题共7小题,每小题4分,共28分11.在数列中,,且对于任意正整数n,都有,则=

.参考答案:4951

略12.已知某球体的体积与其表面积的数值相等,则此球体的半径为___________.参考答案:3略13.若函数f(x)=x3﹣x在(a,10﹣a2)上有最小值,则a的取值范围为

.参考答案:[﹣2,1)【考点】利用导数求闭区间上函数的最值.【分析】由题意求导f′(x)=x2﹣1=(x﹣1)(x+1);从而得到函数的单调性,从而可得﹣2≤a<1<10﹣a2;从而解得.【解答】解:∵f(x)=x3﹣x,∴f′(x)=x2﹣1=(x﹣1)(x+1);故f(x)=x3﹣x在(﹣∞,﹣1)上是增函数,在(﹣1,1)上是减函数,在(1,+∞)上是增函数;f(x)=x3﹣x=f(1)=﹣;故x=1或x=﹣2;故﹣2≤a<1<10﹣a2;解得,﹣2≤a<1故答案为:[﹣2,1).14.过点P(2,1)作直线l分别交x轴、y轴的正半轴于A、B两点,则使|PA|·|PB|的值最小时直线l的方程为__________.参考答案:如图所示:设,,,,∴,∴,即时,取最小值,时、直线的倾斜角为,斜率为,∴直线的方程为,即.15.在棱长为1的正方体ABCD﹣A1B1C1D1中,点P是正方体棱上的一点(不包括棱的端点),对确定的常数m,若满足|PB|+|PD1|=m的点P的个数为n,则n的最大值是

.参考答案:12【考点】棱柱的结构特征.【分析】P应是椭圆与正方体与棱的交点,满足条件的点应该在棱B1C1,C1D1,CC1,AA1,AB,AD上各有一点满足条件,由此能求出结果.【解答】解:∵正方体的棱长为1,∴BD1=,∵点P是正方体棱上的一点(不包括棱的端点),满足|PB|+|PD1|=m,∴点P是以2c=为焦距,以2a=m为长半轴的椭圆,∵P在正方体的棱上,∴P应是椭圆与正方体与棱的交点,结合正方体的性质可知,满足条件的点应该在正方体的12条棱上各有一点满足条件.∴满足|PB|+|PD1|=m的点P的个数n的最大值是12,故答案为12.【点评】本题以正方体为载体,主要考查了椭圆定义的灵活应用,属于综合性试题,解题时要注意空间思维能力的培养.16.设P是椭圆上的点.若F1、F2是椭圆的两个焦点,则PF1+PF2=

.参考答案:10【考点】椭圆的定义.【专题】计算题.【分析】先确定椭圆中2a=10,再根据椭圆的定义,可得PF1+PF2=2a=10,故可解.【解答】解:椭圆中a2=25,a=5,2a=10∵P是椭圆上的点,F1、F2是椭圆的两个焦点,∴根据椭圆的定义,PF1+PF2=2a=10故答案为:10【点评】本题以椭圆的标准方程为载体,考查椭圆的定义,属于基础题.17.在一次晚会上,9位舞星共上演个“三人舞”节目,若在这些节目中,任二人都曾合作过一次,且仅合作一次,则=

。参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知椭圆的离心率为,且.(1)求椭圆的标准方程;(2)直线:与椭圆交于A,B两点,是否存在实数m,使线段AB的中点在圆上,若存在,求出m的值;若不存在,说明理由.参考答案:(1);(2)实数m不存在,理由见解析.试题分析:(1)运用椭圆的离心率公式和的关系,解方程可得,进而得到椭圆方程;(2)设,,线段的中点为.联立直线方程和椭圆方程,运用韦达定理和中点坐标公式,求得的坐标,代入圆的方程,解方程可得,进而判断不存在.试题解析:(1)由题意得,解得故椭圆的方程为;(2)设,,线段的中点为联立直线与椭圆的方程得,即,即,,所以,即.又因点在圆上,可得,解得与矛盾.故实数不存在.考点:椭圆的简单性质.19.设p:实数满足,其中;q:实数x满足.(1)若,且为真,为假,求实数x的取值范围;(2)若是的充分不必要条件,求实数a的取值范围.参考答案:(1)当为真时,当为真时,因为为真,为假,所以,一真一假,若真假,则,解得;若假真,则,解得,综上可知,实数的取值范围为.(2)由(1)知,当为真时,,因为是的充分不必要条件,所以是的必要不充分条件,因为为真时,若,有且是的真子集,所以,解得:,因为为真时,若,有且是的真子集,所以,不等式组无解.综上所述:实数的取值范围是.

20.已知成等差数列.又数列此数列的前n项的和Sn()对所有大于1的正整数n都有

(1)求数列的第n+1项;

(2)若的等比中项,且Tn为{bn}的前n项和,求Tn参考答案:解:(1)成等差数列,∴∴∵,∴∴{}是以为公差的等差数列.∵,∴

(2)∵数列的等比中项,∴

∴21.(本小题满分12分)已知函数,(Ⅰ)若函数在

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论