用树状图或表格求概率 省赛获奖_第1页
用树状图或表格求概率 省赛获奖_第2页
用树状图或表格求概率 省赛获奖_第3页
用树状图或表格求概率 省赛获奖_第4页
用树状图或表格求概率 省赛获奖_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第三章概率的进一步认识3.1用树状图或表格求概率(三)概率利用树状图或表格可以清晰地表示出某个事件发生的所有可能出现的结果;从而较方便地求出某些事件发生的概率.蓝绿配紫色游戏小颖为学校联欢会设计了一个“配紫色”游戏:下面是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形.游戏者同时转动两个转盘,如果转盘A转出了红色,转盘B转出了蓝色,那么他就赢了,因为红色和蓝色在一起配成了紫色.(1)利用画树状图或列表的方法表示游戏所有可能出现的结果.(2)游戏者获胜的概率是多少?解:(1)树状图可以是:开始红白黄蓝绿(红,黄)(红,蓝)(红,绿)(白,黄)(白,蓝)(白,绿)黄蓝绿第二个转盘第一个转盘黄蓝绿红白(红,黄)(白,黄)(红,蓝)(白,蓝)(红,绿)(白,绿)表格可以是:(2)P(游戏获胜)=想一想用下图所示的转盘进行“配紫色”游戏.

开始红蓝红蓝红蓝(红,红)(红,蓝)(蓝,红)(蓝,蓝)小颖制作了下图,并据此求出游戏者获胜的概率为红色蓝色红色1(红1,红)(红1,蓝)红色2(红2,红)(红2,蓝)蓝色(蓝,红)(蓝,蓝)你认为谁做的对?说说你的理由.A盘B盘小颖的做法是不正确的,因为A盘中红色区域和蓝色区域的面积不同,所以指针落在这两个区域的可能性是不同的.而小亮的做法是正确的,他将A盘的红色区域分成2份,这样各种结果出现的可能性就相同了,也就可以用等可能概型的概率计算公式计算概率了.议一议利用画树状图和列表的方法求概率时应注意些什么?各种结果出现的可能性要相同.例2一个盒子中装有两个红球、两个白球和一个蓝球,这些球除颜色外都相同.从中随机摸出一个球,记下颜色后放回,再从中随机摸出一个球,求两次摸到的球的颜色能配成紫色的概率.解:先将两个红球分别记作“红1”“红2”,两个白球分别记作“白1”“白2”.然后列表如下:总共有25种结果,每种结果出现的可能性相同,而两次摸到的球的颜色能配成紫色的结果有4种:(红1,蓝)(红2,蓝)(蓝,红1)(蓝,红2),所以P(能配成紫色)=总共有25种结果,每种结果出现的可能性相同,而两次摸到的球的颜色能配成紫色的结果有4种:(红1,蓝)(红2,蓝)(蓝,红1)(蓝,红2),所以,P(能配成紫色)=随堂练习1.用如图所示的两个转盘进行“配紫色”游戏,每个转盘都被分成面积相等的三个扇形,配得紫色的概率是多少?2.用如图所示的两个转盘进行“配紫色”游戏,配得紫色的概率是多少?3.一个盒子中装有三个红球和两个白球,这些球除颜色外都相同.从中随机摸出一个球,记下颜色后放回,再从中随机摸出一个球,求两次摸到相同颜色的球的概率.4.有两组卡片,第一组卡片上写有A,B,B,第二组卡片上写有A,B,B,C,C.分别利用画树状图和列表的方法,求从每组卡片中各抽出一张,都抽到B的概率.5.设计两个转盘进行“配紫色”游戏,使配得紫色的概率是答案不唯一.如第一个转盘平均分成2份,其中一份涂上红色,另一份涂上黄色;第二个转盘平均分成3份,其中一份涂上蓝色,一份涂上黄色,一份

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论