版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广西壮族自治区桂林市咸水中学2021年高三数学文下学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若,则的值为A. B.
C. D.参考答案:D2.已知抛物线为轴负半轴上的动点,为抛物线的切线,分别为切点,则的最小值为(
)A.
B.
C.
D.参考答案:A3.已知三棱锥的三视图如图所示,其中侧视图为直角三角形,俯视图为等腰直角三角形,则此三棱锥的体积等于(
)(A)
(B)
(C)
(D)参考答案:A略4.设函数f(x)=log(x2+1)+,则不等式f(log2x)+f(logx)≥2的解集为()A.(0,2] B.[,2] C.[2,+∞) D.(0,]∪[2,+∞)参考答案:B【考点】对数函数的图象与性质;对数的运算性质.【专题】数形结合;换元法;函数的性质及应用.【分析】∵f(﹣x)=(x2+1)+=f(x),∴f(x)为R上的偶函数,且在区间[0,+∞)上单调递减,再通过换元法解题.【解答】解:∵f(﹣x)=(x2+1)+=f(x),∴f(x)为R上的偶函数,且在区间[0,+∞)上单调递减,令t=log2x,所以,=﹣t,则不等式f(log2x)+f()≥2可化为:f(t)+f(﹣t)≥2,即2f(t)≥2,所以,f(t)≥1,又∵f(1)=2+=1,且f(x)在[0,+∞)上单调递减,在R上为偶函数,∴﹣1≤t≤1,即log2x∈[﹣1,1],解得,x∈[,2],故选:B.【点评】本题主要考查了对数型复合函数的性质,涉及奇偶性和单调性的判断及应用,属于中档题.5.下列函数中,既是奇函数又是增函数的是
参考答案:C6.若函数的递减区间为(,),则a的取值范围是()A.a>0B.-1<a<0C.a>1D.0<a<1参考答案:答案:A7.设抛物线上一点P到y轴的距离是4,则点P到该抛物线焦点的距离是(
)A.4 B.6 C.8 D.12参考答案:试题分析:先根据抛物线的方程求得抛物线的准线方程,根据点P到y轴的距离求得点到准线的距离进而利用抛物线的定义可知点到准线的距离与点到焦点的距离相等,进而求得答案.解:抛物线y2=8x的准线为x=﹣2,∵点P到y轴的距离是4,∴到准线的距离是4+2=6,根据抛物线的定义可知点P到该抛物线焦点的距离是6故选B8.设,则A.
B.
C.
D.参考答案:C因为,,,因为,所以,所以,选C.9.已知函数f(x)=x2-cosx,则f(-0.5),f(0),f(0.6)的大小关系是()A.f(0)<f(-0.5)<f(0.6)B.f(-0.5)<f(0.6)<f(0)C.f(0)<f(0.6)<f(-0.5)D.f(-0.5)<f(0)<f(0.6)参考答案:A10.若集合,,则(
)A、
B、
C、R
D、
参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11.将一颗质地均匀的正四面体骰子(每个面上分别写有数字1,2,3,4)先后抛掷2次,观察其朝下一面的数字,则两次数字之和等于6的概率为
.参考答案:两次数字之和等于有三种基本事件,所以概率为
12.函数的定义域为
参考答案:13.若展开式中只有第六项的二项式系数最大,则展开式中的常数项是__________.参考答案:180【分析】根据展开式中只有第六项的二项式系数最大,可以求出,再利用展开式的通项公式求出常数项是第几项,最后求出常数项.【详解】因为展开式中只有第六项的二项式系数最大,所以,展开式的通项公式为,令,解得,所以展开式的常数项为.【点睛】本题考查了二项式的系数和展开式的通项公式的应用问题,考查了运算能力.
14.复数.(为虚数单位)的虚部是参考答案:15.如图3,已知,是的两条弦,,,,则的半径等于________.参考答案:16.曲线在点(0,1)处的切线方程为
。参考答案:17.已知函数()的部分图象如上图所示,则的函数解析式为
.参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分12分)已知函数(1)设两曲线与有公共点,且在公共点处的切线相同,若,试建立关于的函数关系式;(2)在(1)的条件下求的最大值;(3)若时,函数在(0,4)上为单调函数,求的取值范围。参考答案:1)因为与在公共点处的切线相同。。由题意知即,………………2分解得或(舍去),……4分.
(2)令,则,当变化时,及的变化情况如下表:极大值所以,时,有最大值.………………7分(3). 在上恒为单调函数,所以, 或恒成立, 或在时恒成立, (舍)或对恒成立.…9分 对恒成立,, 或. 综上,或.………………12分19. 设函数 (1)求函数的单调减区间; (2)若,求函数的值域;参考答案:略20.点为抛物线上一定点,斜率为的直线与抛物线交于两点.(Ⅰ)求弦中点的纵坐标;(Ⅱ)点是线段上任意一点(异于端点),过作的平行线交抛物线于两点,求证:为定值.参考答案:解答:(Ⅰ)(*)所以,.(Ⅱ)设,直线:,联立方程组,所以,,同理.由(*)可知:,所以,即所以,即21.已知函数f(x)=ln(x+1)+ax2﹣x,a∈R.(Ⅰ)当a=时,求函数y=f(x)的极值;(Ⅱ)若对任意实数b∈(1,2),当x∈(﹣1,b]时,函数f(x)的最大值为f(b),求a的取值范围.参考答案:【考点】利用导数研究函数的极值;利用导数求闭区间上函数的最值.【专题】导数的综合应用.【分析】(Ⅰ)将a=时代入函数f(x)解析式,求出函数f(x)的导函数,令导函数等于零,求出其根;然后列出x的取值范围与f′(x)的符号及f(x)的单调性情况表,从表就可得到函数f(x)的极值;(Ⅱ)由题意首先求得:,故应按a<0,a=0,a>0分类讨论:当a≤0时,易知函数f(x)在(﹣1,0)上单调递增,在(0,+∞)上单调递减,从而当b∈(0,1)时f(b)<f(0),则不存在实数b∈(1,2),符合题意;当a>0时,令f′(x)=0有x=0或,又要按根大于零,小于零和等于零分类讨论;对各种情况求函数f(x)x∈(﹣1,b]的最大值,使其最大值恰为f(b),分别求得a的取值范围,然而将所得范围求并即得所求的范围;若求得的a的取值范围为空则不存在,否则存在.【解答】解:(Ⅰ)当a=时,,则,化简得(x>﹣1),列表如下:x(﹣1,0)0(0,1)1(1,+∞)f′(x)+0﹣0+f(x)增极大值减极小值增∴函数f(x)在(﹣1,0),(1,+∞)上单调递增,在(0,1)上单调递减,且f(0)=0,f(1)=ln2﹣,∴函数y=f(x)在x=1处取到极小值为,在x=0处取到极大值为0;
(Ⅱ)由题意,(1)当a≤0时,函数f(x)在(﹣1,0)上单调递增,在(0,+∞)上单调递减,此时,不存在实数b∈(1,2),使得当x∈(﹣1,b)时,函数f(x)的最大值为f(b);(2)当a>0时,令f′(x)=0有x=0或,①当,即a>时,函数f(x)在()和(0,+∞)上单调递增,在()上单调递减,要存在实数b∈(1,2),使得当x∈(﹣1,b]时,函数f(x)的最大值为f(b),则f()<f(1),代入化简得,令(a>),∵恒成立,故恒有,∴a时,恒成立;②当,即0<a<时,函数f(x)在(﹣1,0)和()上单调递增,在(0,)上单调递减,此时由题,只需,解得a≥1﹣ln2,又1﹣ln2,∴此时实数a的取值范围是1﹣ln2≤a<;③当a=时,函数f(x)在(﹣1,+∞)上单调递增,显然符合题意.综上,实数a的取值范围是[1﹣ln2,+∞).【点评】本题考查了利用导数研究函数的单调性,考查了利用导数求函数的最值,着重考查了分类讨论的数学思想方法和数学转化思想方法,解答该题要求考生具有较强的逻辑思维能力,属难度较大的题目.22.已知函数f(x)=|x﹣a|.(1)若不等式f(x)≤3的解集为{x|﹣1≤x≤5},求实数a的值;(2)在(1)的条件下,若f(x)+f(x+5)≥m对一切实数x恒成立,求实数m的取值范围.参考答案:【考点】绝对值不等式的解法;函数恒成立问题.【分析】(1)不等式f(x)≤3就是|x﹣a|≤3,求出它的解集,与{x|﹣1≤x≤5}相同,求实数a的值;(2)在(1)的条件下,f(x)+f(x+5)≥m对一切实数x恒成立,根据f(x)+f(x+5)的最小值≥m,可求实数m的取值范围.【解答】解:(1)由f(x)≤3得|x﹣a|≤
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 合同 仲裁诉讼条款
- 大班音乐绘本《月光长廊》课件
- 2024上海市非定期集装箱道路货物运输合同
- 三年级语文上册第一单元测试卷-基础知识与综合能力篇 含答案 部编版
- 2024家庭水电装修合同书
- 2024收银员聘用合同
- 2024标准销售代理合同格式
- 深圳大学《哲学经典与人生》2021-2022学年第一学期期末试卷
- 深圳大学《形体训练(流行舞蹈)》2022-2023学年第一学期期末试卷
- 合同样本-土建合同范本8篇
- 2024年江苏省中等职业学校学生学业水平考试机械CAD绘图试卷(含5张图)
- 2023年中国铁路国际有限公司招聘考试试题及答案
- 沪科版(2024)八年级全一册物理第一学期期中学业质量测试卷(含答案)
- 计算机图形学智慧树知到期末考试答案章节答案2024年北京理工大学
- 2024年山东省港口集团有限公司招聘笔试参考题库含答案解析
- 30屈原《楚辞·橘颂》课件
- 《学生仪容仪表》主题班会PPT课件
- 课程设计(论文)3kta梨果酱车间工艺设计
- 毕业设计(论文)长沙办公楼空调系统设计
- 第三章电阻材料
- 体育科学研究方法(第三版)第07章实验法
评论
0/150
提交评论