版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
24.2.1点和圆的位置关系教学设计设计人:审核:数学组班级姓名得分一、学习目标【知识与能力】理解点与圆的位置关系由点到圆心的距离决定.理解不在同一条直线上的三个点确定一个圆.会画三角形的外接圆,熟识相关概念.了解反证法。【过程与方法】经历探索点与圆的位置关系的过程,体会数学分类思考的数学思想.【情感态度与价值观】通过本节课的教学,渗透数形结合的思想和运动变化的观点的教育.二、探究:探究(一)(自主探究):1、由位置判定距离⊙O的半径为r,点A、B、C、D在圆上,则OA__OB__OC__OD=___.点E在圆内,点F在圆外,则OE__r,OF__r.2、由距离判断位置⊙O的半径为5,OA=7,OB=5,OC=2,则点A在圆____,点B在圆___,点C在圆___.3、知识要点一、点与圆的位置关系dr点P在___,dr点P在___,dr点P在____4、巩固练习⊙O的半径10cm,A、B、C三点到圆心的距离分别为8cm、10cm、12cm,则点A、B、C与⊙O的位置关系是:点A在_____;点B在_____;点C在________.2.⊙O的半径6,当OP=6时,点P在____;当OP_____时点P在圆内;当OP_____时,点P不在圆外.●B●A●●B●A●O1.过一点可以作几个圆?2.过两点可以作几个圆?3.过不在同一条直线上的三点可以作几个圆?4、知识要点二:过已知一点可作个圆.过已知两点可作个圆.不在同一条直线上的三个点个圆。(有,且仅有一个)三、操作归纳:(见课本102页第8题图)四、谈一下你的收获与不足:五、当堂达标:1.判断下列说法是否正确(1)任意的一个三角形一定有一个外接圆()(2)任意一个圆有且只有一个内接三角形()(3)经过三点一定可以确定一个圆()(4)三角形的外心到三角形各顶点的距离相等()2.若一个三角形的外心在一边上,则此三角形的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形3.正方形ABCD的边长为2cm,以A为圆心2cm为半径作⊙A,则点B在⊙A_____;点C在⊙A____;点D在⊙A_____.4.已知AB为⊙O的直径P为⊙O上任意一点,则点关于AB的对称点P′与⊙O的位置为()A.在⊙O内B.在⊙O外C.在⊙O上D.不能确定5.已知⊙O的面积为9π,判断点P与⊙O的位置关系.(1)若PO=4.5,则点P在_____;(2)若PO=2,则点P在_____;(3)若PO=_____,则点P在圆上.作业:1、课本95页1、2、3.2、任意四个点是不是可以画一个圆?五个点呢?学情分析我在花园镇中学任教,担任九年级的数学教学。从整体来说,学生对数学的学习积极性不是很强,理解能力相当差,所以我必须慢慢的,一步一个脚印的教学。从近期考试的情况看,学生各学科之间发展不平衡,存在着偏科的现象,而且不论的哪个同学,数学、物理和英语都偏差。因此,为了更好地了解每个学生,帮助每一个学生进一步地提高学习成绩,我把别人规定一个课时完成的内容分两个课时上。这样,有助于学生更好地掌握知识。学生在初一,初二基础上有了一定的分析力,归纳力和根据他们的特点,通过复习旧知引入这节课内容,通过点与圆的相对运动,揭示点与圆的位置关系,培养学生运动变化的辨证唯物主义观点;通过对探索过程的反思,进一步强化对分类和化归思想的认识。
效果分析本节课从整体上看,整体效果较好,学生参与度高!几乎每一名学生都有回答问题的机会,都有了一定的知识体验,在解决问题时也都有各自的思维方式和解决问题的策略。这一堂课我让学生成为了数学学习的主人,我自己充当了数学学习的组织者,取得了意想不到的效果,可见学生的潜力无穷。从教学环节上看,我将本课分为五个环节:复习回顾导入新课-----合作探究------学以致用-------能力提升------小结与达标检测;环节之间过渡自然,衔接紧密,层层递进,逻辑性强,突出了知识整合,便于学生了解本课知识点和构建知识框架,非常流畅!从师生的交流情况和课堂气氛来看,大多数学生非常活跃,大胆讨论,敢于展示自己观点,体现了学生主体地位;这体现了问题设置难易适当,表述清晰,能涵盖本节课的知识点,能很好地调动学生学习和思考问题积极性,思维活动的启发引导到位。就课堂检测的结果来看,效果较好,绝大多数学生对本节课讲的问题理解清楚,掌握扎实,能学以致用。从评价效果来看,我采用语言奖励的方法,很奏效!充分调动了学生的积极性,培养了学生对数学的学习兴趣,效果好!教材分析《点与圆的位置关系》是图形领域的基础知识,是《圆》一章的重要内容之一,学习它为后面学习直线与圆,圆与圆的位置关系、圆的切线等知识打下了坚实的“基石”,直接关系着圆的有关知识的学习,所以它在教材中起着承上启下的作用。评测练习1.判断下列说法是否正确(1)任意的一个三角形一定有一个外接圆()(2)任意一个圆有且只有一个内接三角形()(3)经过三点一定可以确定一个圆()(4)三角形的外心到三角形各顶点的距离相等()2.若一个三角形的外心在一边上,则此三角形的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形3.正方形ABCD的边长为2cm,以A为圆心2cm为半径作⊙A,则点B在⊙A_____;点C在⊙A____;点D在⊙A_____.4.已知AB为⊙O的直径P为⊙O上任意一点,则点关于AB的对称点P′与⊙O的位置为()A.在⊙O内B.在⊙O外C.在⊙O上D.不能确定5.已知⊙O的面积为9π,判断点P与⊙O的位置关系.(1)若PO=4.5,则点P在_____;(2)若PO=2,则点P在_____;(3)若PO=_____,则点P在圆上.《点和圆的位置关系》教学反思本节课的教学内容是点和圆的位置关系,看似内容少而简单,但让学生真正理解如何由图形关系得出数量关系,以及从数量关系联想到图形的位置关系,却并非简单。如果忽略了这一过程,学生会做题,却无法体验数学的本质,无法体验数形结合思想。所以本节课中引导学生由图形联想到数量关系,即有点和圆的位置关系联想到点到圆心的距离与半径的大小关系。我是分两步的得出的,第一步让学生从图形上直观的认识点和圆的三种位置关系,第二步引导学生从数量上判断图形位置,是为了让学生更好的体验数形结合思想。数量关系的探索是这节课的一个重点内容,也是这节课的难点所在。为解决这个问题,在课前布置了学生进行预习,预习内容为以下6点:1、点与圆有哪几种位置关系?可以根据什么来判定?2、经过一个点可以作几个圆?3、经过两个点可以作几个圆?圆心有什么特点?4、经过不在同一直线上的三点可以作几个圆?5、过在同一直线上的三点能作圆吗?如果不能如何证明。6、过在不在同一直线上的三点能作圆吗?如果能,能做几个,如果不能,请说明理由。通过课堂上的提问反馈,可以感受到学生通过预习,在自主学习的基础上能更好的理解知识,从而进一步提高课堂听课的效率。新课标指出,自主探究、动手实践、合作交流应成为学生的主要学习方式,教师应引导学生主动的从事观察、实验、猜测、验证、推理与交流等数学活动,从而使学生形成自己对数学知识的理解和有效的学习策略。本节课中“不在同一直线上的三点可以确定一个圆”让学生经历了循序渐近的探
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年临时员工派遣工作服务合同
- 2025版基础设施建设项目退工程款合同样本3篇
- 二零二五年度木材加工废弃物处理与资源化利用合同2篇
- 2025年劳动力补偿福利协议
- 2025年大学生健身俱乐部协议
- 二零二五版新能源车辆充电站合作协议书下载3篇
- 2025版小产权房购房合同范本:房产交易税费优惠政策解析2篇
- 2025年度木雕工艺品行业信息共享与数据服务合同4篇
- 2025年度个人二手房买卖协议书范本:房屋交易全程保险合同4篇
- 2025年食堂承包经营餐饮服务安全检查与整改协议3篇
- 茉莉花-附指法钢琴谱五线谱
- 结婚函调报告表
- SYT 6968-2021 油气输送管道工程水平定向钻穿越设计规范-PDF解密
- 冷库制冷负荷计算表
- 肩袖损伤护理查房
- 设备运维管理安全规范标准
- 办文办会办事实务课件
- 大学宿舍人际关系
- 2023光明小升初(语文)试卷
- GB/T 14600-2009电子工业用气体氧化亚氮
- 申请使用物业专项维修资金征求业主意见表
评论
0/150
提交评论