版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年黑龙江省哈尔滨市时代中学高一数学理模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知全集,若非空集合,则实数的取值范围是()A.B.
C.D.参考答案:D2.已知是钝角三角形,且角C为钝角,则点P落在
(
)
A.第一象限
B.第二象限
C.第三象限
D.第四象限
参考答案:D
解析:由正弦定理,角C为钝角得,所以,选D3.如果集合中至少有一个负数,则(
)
A.
B.
C.
D.参考答案:B略4.当圆的面积最大时,圆心的坐标是(
)A.(0,-1) B.(-1,0) C.(1,-1) D.(-1,1)参考答案:B圆的标准方程得:(x+1)2+,当半径的平方取最大值为1时,圆的面积最大.∴k=0,即圆心为(-1,0).选B.5.已知函数y=ax2+bx+c,如果a>b>c且a+b+c=0,则它的图象可能是(
)A. B. C. D.参考答案:D【分析】根据和可得到的符号,然后再根据四个选项中的抛物线的开口方向和图象与y轴的交点进行判断即可得到结论.【详解】∵且,∴,∴抛物线的开口向上,与y轴的交点在负半轴上,∴选项D符合题意.故选D.【点睛】本题考查函数图象识别,考查分析问题和理解问题的能力,解题的关键是由题意得到的符号,然后再根据抛物线的特征进行判断.6.与向量=(12,5)平行的单位向量为(
)A.
B.
C.
D.
参考答案:C略7.已知,若P点是△ABC所在平面内一点,且,则的最大值等于()A.13 B.15 C.19 D.21参考答案:A【考点】9R:平面向量数量积的运算.【分析】建系,由向量式的几何意义易得P的坐标,可化=﹣4(﹣4)﹣(t﹣1)=17﹣(4?+t),由基本不等式可得.【解答】解:由题意建立如图所示的坐标系,可得A(0,0),B(,0),C(0,t),∵,∴P(1,4),∴=(﹣1,﹣4),=(﹣1,t﹣4),∴=﹣4(﹣4)﹣(t﹣1)=17﹣(4t+),由基本不等式可得+4t≥2=4,∴17﹣(4t+)≤17﹣4=13,当且仅当4t=即t=时取等号,∴的最大值为13,故选:A.8.当–1≤x≤1时,函数y=ax+2a+1的值有正也有负,则实数a的取值范围是A
B
C
D
参考答案:C9.某三棱锥的三视图如图所示,该三棱锥的表面积是()A.28+6 B.30+6 C.56+12 D.60+12参考答案:B【考点】由三视图求面积、体积.【分析】通过三视图复原的几何体的形状,利用三视图的数据求出几何体的表面积即可.【解答】解:三视图复原的几何体是底面为直角边长为4和5的三角形,一个侧面垂直底面的等腰三角形,高为4,底边长为5,如图,所以S底==10,S后=,S右==10,S左==6.几何体的表面积为:S=S底+S后+S右+S左=30+6.故选:B.10.把
化为八进制数,结果是
(
)A.
B.
C.
D.参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11.定义:区间[m,n]、(m,n]、[m,n)、(m,n)(n>m)的区间长度为;若某个不等式的解集由若干个无交集的区间的并表示,则各区间的长度之和称为解集的总长度。已知是偶函数,是奇函数,它们的定义域均为[-3,3],则不等式解集的总长度的取值范围是_________。参考答案:[0,3]∵是偶函数,是奇函数,∴若,使得,则,∴解集的总长度至多为,例如,。如果函数的解集总长度不为0,则解集的总长度相应减少,直至为0。∴解集的总长度的取值范围是[0,3]。
12.已知某个几何体的三视图如图,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是. 参考答案:【考点】由三视图求面积、体积. 【专题】综合题. 【分析】先有三视图得到几何体的形状及度量关系,利用棱锥的体积公式求出体积. 【解答】解:由三视图可得几何体是四棱锥V﹣ABCD, 其中面VCD⊥面ABCD; 底面ABCD是边长为20cm的正方形;棱锥的高是20cm 由棱锥的体积公式得V===cm3 【点评】三视图是新增考点,根据三张图的关系,可知几何体是正方体的一部分,是一个四棱锥.本题也可改编为求该几何体的外接球的表面积,则必须补全为正方体,增加了难度. 13.函数的定义域是
参考答案:14.已知,那么等于
参考答案:15.(5分)某班有学生55人,其中体育爱好者43人,音乐爱好者34人,还有4人既不爱好体育也不爱好音乐,则该班既爱好体育又爱好音乐的人数为
人参考答案:26考点:Venn图表达集合的关系及运算.专题:数形结合.分析:画出表示参加体育爱好者、音乐爱好者集合的Venn图,结合图形进行分析求解即可.解答:由条件知,每名同学至多参加两个小组,设参加体育爱好者、音乐爱好者的人数构成的集合分别为A,B,则card(A∪B)=55﹣4=51.card(A)=43,card(B)=34,由公式card(A∪B)=card(A)+card(B)﹣card(A∩B)知51=43+34﹣card(A∩B)故card(A∩B)=26则该班既爱好体育又爱好音乐的人数为26人.故答案为:26.点评:本小题主要考查Venn图表达集合的关系及运算、Venn图的应用、集合中元素的个数等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.16.下列四个函数中,在上为增函数的是(
)(A)
(B)
(C)(D)参考答案:D17.已知f(x)是R上的奇函数,当x>0时,f(x)=x,则f(﹣9)=
.参考答案:﹣3【考点】函数的值.【分析】先由x>0时,f(x)=x,求出f(9),再根据f(x)是R上的奇函数,得到答案.【解答】解:∵当x>0时,f(x)=x,∴f(9)=3,∵f(x)是R上的奇函数,∴f(﹣9)=﹣f(9)=﹣3,故答案为:﹣3【点评】本题考查的知识点是函数奇偶性的性质,函数求值,难度不大,属于基础题.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分14分)设函数,已知不等式的解集为.(1)若不等式的解集为,求实数的取值范围;[KS5UKS5U](2)若对任意的实数都成立,求实数的取值范围.参考答案:(1);(2).试题分析:(1)首先根据不等式的解集求得的值,然后求出函数的最小值,从而求的取值范围得;(2)首先将问题转化为,然后根据函数的单调性求得的取值范围.考点:1、不等式恒成立问题;2、函数的单调性.【方法点睛】在给定自变量的取值范围时,解有关不等式问题时,往往采用分离变量或适当变形,或变换主元,或构造函数,再利用函数的单调或基本不等式进行求解,在解答时,一定要注意观察所给不等式的形式和结构,选取合适的方法去解答.19.已知定义域为的函数是奇函数。(Ⅰ)求的值;(Ⅱ)判断函数的单调性;(Ⅲ)若对任意的,不等式恒成立,求的取值范围.参考答案:(Ⅰ)定义域为的奇函数,所以(Ⅱ)由(Ⅰ)得设且由得,是增函数(Ⅲ)是奇函数是增函数对任意的恒成立所以所求的取值范围是20.已知集合,.(1)存在,使得,求的取值范围;(2)若,求的取值范围.参考答案:(1);(2).21.已知函数(1)用函数单调性的定义证明f(x)在区间[2,+∞)上为增函数(2)解不等式:f(x2﹣2x+4)≤f(7)参考答案:【考点】函数单调性的判断与证明;函数单调性的性质.【分析】(1)任取x1,x2∈[2,+∞),且x1<x2,通过作差比较f(x1)与f(x2)的大小,根据增函数的定义,只需说明f(x1)<f(x2)即可;(2)根据函数的单调性得到x2﹣2x+4≤7,求出不等式的解集即可.【解答】(1)证明:任取x1,x2∈[2,+∞),且x1<x2,则f(x1)﹣f(x2)=(x1+)﹣(x2+)=(x1﹣x2)+=,因为2≤x1<x2,所以x1﹣x2<0,x1x2>4,所以f(x1)﹣f(x2)<0,即f(x1)<f(x2),所以f(x)=x+在[2,+∞)上为增函数.(2)解:∵x2﹣2x+4≥2,结合(1)得f(x)在[2,+∞)递增,所以x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 软装设计师年终总结范文
- 有关技术服务合同模板(19篇)
- 学生演讲稿关于父母(3篇)
- 教练员聘用合同
- 湖南省常德市2023-2024学年高一上学期期末考试化学试题(含答案)
- 计时服务计费标准
- 设备及货物采购合同分析
- 设计服务合同创意样本
- 诚信大理石供应与安装协议
- 详尽完备的招标文件指南
- 《实验活动1 配制一定物质的量浓度的溶液》课件
- 2024年国家保安员考试题库附参考答案(考试直接用)
- 《“3S”技术及其应用》试卷
- 2024-电商控价协议范本
- 中药养颜秘籍智慧树知到期末考试答案2024年
- 手术切口感染PDCA案例
- 殡葬礼仪服务应急预案
- 校运会裁判员培训
- 烟雾病与麻醉
- 数字教育工具在智慧课堂中的创新应用
- 《光伏发电工程预可行性研究报告编制规程》(NB/T32044-2018)中文版
评论
0/150
提交评论