版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省蚌埠市龙湖中学2022-2023学年高三数学文联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.如图,在一个正方体内放入两个半径不相等的球O1,O2,这两个球相外切,且球O1与正方体共顶点A的三个面相切,球O2与正方体共顶点B1的三个面相切,则两球在正方体的面AA1C1C上的正投影是参考答案:D2.若定义域为R的函数f(x)满足:对任意两个不相等的实数x1,x2,都有,记:a=4f(0.25),b=0.5f(2),c=0.2f(5),则()A.a>b>c B.c>a>b C.b>a>c D.c>b>a参考答案:A【考点】函数单调性的性质;函数单调性的判断与证明.【分析】∴对任意两个不等的正实数x1,x2,都有?,令g(x)=,易得g(x)在(0,+∞)上递减即可.【解答】解:定义域为R的函数f(x)满足:对任意两个不等的实数x1,x2,都有,∴对任意两个不等的正实数x1,x2,都有?,令g(x)=,易得g(x)在(0,+∞)上递减,a=4f(0.25)=g(0.25),b=0.5f(2)=g(2),c=0.2f(5)=g(5),∴g(0.25)>g(2)>g(5),?a>b>c.故选:A.【点评】本题考查了构造新函数,函数的单调性的运用,属于基础题.3.复数=(
)A.2
B.-2
C.2-2
D.2+2参考答案:A略4.已知点是抛物线的焦点,为坐标原点,若以为圆心,为半径的圆与直线相切,则抛物线的方程为(
)A.
B.
C.
D.参考答案:B5.等比数列{an}中,a4=2,a5=5,则数列{lgan}的前8项和等于()A.6 B.5 C.4 D.3参考答案:C【考点】等比数列的前n项和.【分析】利用等比数列的性质可得a1a8=a2a7=a3a6=a4a5=10.再利用对数的运算性质即可得出.【解答】解:∵数列{an}是等比数列,a4=2,a5=5,∴a1a8=a2a7=a3a6=a4a5=10.∴lga1+lga2+…+lga8=lg(a1a2?…?a8)=4lg10=4.故选:C.6.(12分)在一次购物抽奖活动中,假设10张奖券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,可获价值10元的奖品;其余6张没有奖.某顾客从此10张奖券中任抽2张,求:(1)该顾客中奖的概率;(2)该顾客获得的奖品总价值不低于20元的概率.参考答案:解析:(1)该顾客中奖的概率为:
…6分
(2)方法1:该顾客获得的奖品总价值不低于20元,有以下三种情形:
该顾客获得的奖品总价值为20元的概率为:;
该顾客获得的奖品总价值为50元的概率为:;
该顾客获得的奖品总价值为60元的概率为:;故该顾客获得的奖品总价值不低于20元的概率为:.…12分
方法2:可考虑其对立事件的概率:
.…12分7.设集合,则下列关系中正确是(
)
A.A=B
B.
C.
D.参考答案:D略8.运行如图所示的程序框图若输出的s的值为55则在内应填入(
)A. B. C. D.参考答案:C【分析】根据程序框图的循环条件,依次计算,即得解【详解】初始:;,不满足条件;,不满足条件;,不满足条件;,不满足条件;,不满足条件;,不满足条件;,不满足条件;,不满足条件;,不满足条件;,满足输出条件;故选:C【点睛】本题考查了程序框图的循环结构,考查了学生逻辑推理,数学运算能力,属于中档题.9.设偶函数对任意都有,且当时,,则()A.10 B. C. D.参考答案:C10.设函数(,为自然对数的底数).若曲线上存在使得,则的取值范围是(
)(A)
(B)
(C)
(D)参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11.
.
参考答案:略12.在平面直角坐标系中,曲线C的方程为(θ为参数),在以此坐标系的原点为极点,x轴的正半轴为极轴的极坐标系中,直线l的极坐标方程为ρsin(θ+)=1,则直线l与曲线C的公共点共有
个.参考答案:1考点:参数方程化成普通方程;简单曲线的极坐标方程.专题:直线与圆.分析:由曲线C的方程(θ为参数),消去参数化为x2+y2=1,可得圆心C,半径r.由直线l的极坐标方程ρsin(θ+)=1,展开为=1,化为y+x﹣=0.再利用点到直线的距离公式可得圆心到直线l的距离d,再与半径r比较大小即可.解答: 解:由曲线C的方程(θ为参数),消去参数化为x2+y2=1,可得圆心C(0,0),半径r=1.由直线l的极坐标方程ρsin(θ+)=1,展开为=1,化为y+x﹣=0.∴圆心C到直线l的距离d==1=r.因此直线l与⊙C相切,有且只有一个公共点.故答案为:1.点评:本题考查了把极坐标方程化为直角坐标方程、参数方程化为普通方程、直线与曲线的交点判断、点到直线的距离公式,考查了推理能力与计算能力,属于基础题.13.已知函数f(x)=,则f(f(1/4))的值为.参考答案:9【考点】3T:函数的值.【分析】利用分段函数定义得f()==﹣2,由此能求出f的值.【解答】解:∵函数f(x)=,∴f()==﹣2,则f(f(1/4))=f(﹣2)==9.故答案为:9.14.已知函数对任意的满足,且当时,.若有4个零点,则实数的取值范围是
.参考答案:15.选派5名学生参加四项环保志愿活动,要求每项活动至少有一人参加,则不同的选派方法共有_____种.参考答案:
略16.四面体ABCD的每个顶点都在球O的球面上,AB,AC,AD两两垂直,且,,,则四面体ABCD的体积为____,球O的表面积为____参考答案:1;
14π【分析】①根据四面体的特征,利用锥体体积公式求解,②利用补图法可得该四面体的外接球与以AB,AC,AD为长宽高的长方体的外接球相同,求出体对角线长度即直径,即可得解.【详解】因为AB,AC,AD两两垂直,且,,,所以四面体ABCD的体积,该四面体的外接球与以AB,AC,AD为长宽高的长方体的外接球相同,直径为该长方体的体对角线长球O的表面积为.故答案为:①1,②【点睛】此题考查求锥体体积,解决几何体的外接球问题,需要积累常见几何体外接球半径的求解方法,以便于解题中能够事半功倍.17.已知点(x,y)满足约束条件则的最小值是
。参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.设函数f(x)=(a∈R)(Ⅰ)若f(x)在x=0处取得极值,确定a的值,并求此时曲线y=f(x)在点(1,f(1))处的切线方程;(Ⅱ)若f(x)在[3,+∞)上为减函数,求a的取值范围.参考答案:【考点】利用导数研究函数的极值;利用导数研究曲线上某点切线方程.【专题】导数的综合应用.【分析】(I)f′(x)=,由f(x)在x=0处取得极值,可得f′(0)=0,解得a.可得f(1),f′(1),即可得出曲线y=f(x)在点(1,f(1))处的切线方程;(II)解法一:由(I)可得:f′(x)=,令g(x)=﹣3x2+(6﹣a)x+a,由g(x)=0,解得x1=,x2=.对x分类讨论:当x<x1时;当x1<x<x2时;当x>x2时.由f(x)在[3,+∞)上为减函数,可知:x2=≤3,解得即可.解法二:“分离参数法”:由f(x)在[3,+∞)上为减函数,可得f′(x)≤0,可得a≥,在[3,+∞)上恒成立.令u(x)=,利用导数研究其最大值即可.【解答】解:(I)f′(x)==,∵f(x)在x=0处取得极值,∴f′(0)=0,解得a=0.当a=0时,f(x)=,f′(x)=,∴f(1)=,f′(1)=,∴曲线y=f(x)在点(1,f(1))处的切线方程为,化为:3x﹣ey=0;(II)解法一:由(I)可得:f′(x)=,令g(x)=﹣3x2+(6﹣a)x+a,由g(x)=0,解得x1=,x2=.当x<x1时,g(x)<0,即f′(x)<0,此时函数f(x)为减函数;当x1<x<x2时,g(x)>0,即f′(x)>0,此时函数f(x)为增函数;当x>x2时,g(x)<0,即f′(x)<0,此时函数f(x)为减函数.由f(x)在[3,+∞)上为减函数,可知:x2=≤3,解得a≥﹣.因此a的取值范围为:.解法二:由f(x)在[3,+∞)上为减函数,∴f′(x)≤0,可得a≥,在[3,+∞)上恒成立.令u(x)=,u′(x)=<0,∴u(x)在[3,+∞)上单调递减,∴a≥u(3)=﹣.因此a的取值范围为:.【点评】本题考查了导数的运算法则、利用导数的几何意义研究切线方程、利用导数研究函数的单调性极值,考查了分类讨论思想方法、“分离参数法”、推理能力与计算能力,属于难题.19.已知函数f(x)=|x﹣1|+|x﹣a|.(1)若a=2,解不等式f(x)≥2;(2)若a>1,?x∈R,f(x)+|x﹣1|≥1,求实数a的取值范围.参考答案:【考点】绝对值不等式的解法;函数的最值及其几何意义;函数恒成立问题.【分析】(1)通过分类讨论,去掉绝对值函数中的绝对值符号,转化为分段函数,即可求得不等式f(x)≥2的解集;(2)通过分类讨论,去掉绝对值函数中的绝对值符号,转化为分段函数,根据一次函数的单调性可得函数在R上先减后增,得到函数的最小值为f(1)+|1﹣1|=f(1)=a﹣1,而不等式f(x)+|x﹣1|≥1解集为R即a﹣1≥1恒成立,解之即可得到实数a的取值范围.【解答】解:(1)当a=2时,,由于f(x)≥2,则①当x<1时,﹣2x+3≥2,∴x≤;②当1≤x≤1时,1≥2,无解;③当x>2时,2x﹣3≥2,∴x≥.综上所述,不等式f(x)≥2的解集为:(﹣∞,]∪[,+∞);(2)令F(x)=f(x)+|x﹣1|,则,所以当x=1时,F(x)有最小值F(1)=a﹣1,只需a﹣1≥1,解得a≥2,所以实数a的取值范围为[2,+∞).20.(本小题满分12分)已知椭圆()的焦距为,离心率为.(1)求椭圆方程;(2)设过椭圆顶点,斜率为的直线交椭圆于另一点,交轴于点,且成等比数列,求的值.参考答案:(Ⅰ)由已知,.
……………2分解得,
……………4分所以,椭圆的方程为.
……………5分(Ⅱ)由(Ⅰ)得过点的直线为,由21.设当时,函数的值域为,且当时,恒有,求实数k的取值范围.参考答案:令t=2,由x1,则t∈(0,2,则原函数y=t-2t+2=(t-1)+1∈[1,2],即D=[1,2],由题意:f(x)=x2+kx+54x,法1:则x2+(k-4)x+50当x∈D时恒成立
∴
k-2。法2:则在时恒成立,故22.如图,在几何体ABCDEF中,底面ABCD为矩形,EF∥CD,CD⊥EA,CD=2EF=2,ED=.M为棱FC上一点,平面ADM与棱FB交于点N.(Ⅰ)求证:ED⊥CD;(Ⅱ)求证:AD∥MN;(Ⅲ)若AD⊥ED,试问平面BCF是否可能与平面ADMN垂直?若能,求出的值;若不能,说明理由.参考答案:【考点】平面与平面垂直的判定;直线与平面垂直的判定;直线与平面垂直的性质.【分析】(Ⅰ)证明:CD⊥平面EAD,即可证明ED⊥CD;(Ⅱ)证明AD∥平面FBC,即可证明:AD∥MN;(Ⅲ)若使平面ADMN⊥平面BCF,则DM⊥平面BCF,所以DM⊥FC,可得DF=DC=2.若使DM⊥FC能成立,则M为FC的中点.【解答】(Ⅰ)证明:因为ABCD为矩形,所以VD⊥AD.又因为CD⊥EA,所以CD⊥平面EAD.所以ED⊥CD.[](Ⅱ)证明:因为AB
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 企业人力资源外包服务框架协议
- 幼儿园翻土课程设计
- 2024年柴油物流服务协议范本版
- 2024年洗车行业租赁协议标准文本解析与应用版B版
- 上海工程技术大学《体育舞蹈I》2023-2024学年第一学期期末试卷
- 2024年派遣人力资源管理顾问市场调研与分析合同3篇
- 提高拍照技术课程设计
- 大数据技术应用行业实践指南
- 建筑涂料色浆相关项目投资计划书范本
- 租赁劳务合同
- 护理质控输液查对制度
- 2024三方物流园区租赁与运营管理合同3篇
- 【MOOC】例解宏观经济统计学-江西财经大学 中国大学慕课MOOC答案
- 《中国的土地政策》课件
- 【MOOC】电工学-西北工业大学 中国大学慕课MOOC答案
- 专题12 简·爱-2024年中考语文复习文学名著必考篇目分层训练(原卷版)
- 【高考语文】2024年全国高考新课标I卷-语文试题评讲
- 客户满意度论文开题报告
- 2024-2025学年八年级上册历史期末复习选择题(解题指导+专项练习)原卷版
- 课桌椅人体工程学
- 中石油系统员工安全培训
评论
0/150
提交评论