2022-2023学年云南省曲靖市玉光中学高二数学文下学期期末试题含解析_第1页
2022-2023学年云南省曲靖市玉光中学高二数学文下学期期末试题含解析_第2页
2022-2023学年云南省曲靖市玉光中学高二数学文下学期期末试题含解析_第3页
2022-2023学年云南省曲靖市玉光中学高二数学文下学期期末试题含解析_第4页
2022-2023学年云南省曲靖市玉光中学高二数学文下学期期末试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年云南省曲靖市玉光中学高二数学文下学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.在长方体中,与对角线异面的棱有(

)A.3条

B.4条

C.5条

D.6条参考答案:D2.设为定义在上的奇函数,当时,(为常数),则(A)-3

(B)-1

(C)1

(D)3参考答案:A3.已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差为()A.5 B.4 C.3 D.2参考答案:C【分析】写出数列的第一、三、五、七、九项的和即5a1+(2d+4d+6d+8d),写出数列的第二、四、六、八、十项的和即5a1+(d+3d+5d+7d+9d),都用首项和公差表示,两式相减,得到结果.【解答】解:,故选C.【点评】等差数列的奇数项和和偶数项和的问题也可以这样解,让每一个偶数项减去前一奇数项,有几对得到几个公差,让偶数项和减去奇数项和的差除以公差的系数.4.直线的参数方程为,则它的倾斜角为(

)A.

B.

C.

D.参考答案:D略5.甲、乙两人同时从寝室到教室,甲一半路程步行,一半路程跑步,乙一半时间步行,一半时间跑步,如果两人步行速度、跑步速度均相同,则()A.甲先到教室

B.乙先到教室C.两人同时到教室

D.谁先到教室不确定参考答案:B6.三个数的大小顺序是(

)A.

B.

C.

D.

参考答案:D7.已知F1、F2是椭圆的两个焦点,满足?=0的点M总在椭圆内部,则椭圆离心率的取值范围是()A.(0,1) B.(0,] C.(0,) D.[,1)参考答案:C【考点】椭圆的应用.【专题】计算题.【分析】由?=0知M点的轨迹是以原点O为圆心,半焦距c为半径的圆.又M点总在椭圆内部,∴c<b,c2<b2=a2﹣c2.由此能够推导出椭圆离心率的取值范围.【解答】解:设椭圆的半长轴、半短轴、半焦距分别为a,b,c,∵?=0,∴M点的轨迹是以原点O为圆心,半焦距c为半径的圆.又M点总在椭圆内部,∴该圆内含于椭圆,即c<b,c2<b2=a2﹣c2.∴e2=<,∴0<e<.故选:C.【点评】本题考查椭圆的基本知识和基础内容,解题时要注意公式的选取,认真解答.8.设复数z满足,则(

)A. B. C. D.参考答案:B【分析】利用复数的除法运算求出Z,进而求出z的模即可.【详解】∵(3﹣i)z=1﹣i,∴zi,故|z|,故选:B.【点睛】本题考查了复数求模问题,考查复数的运算,是一道基础题.9.已知x,y之间的一组数据:01231357则y与x的回归方程必经过()A.(2,2)

B.(1,3)

C.(1.5,4)D.(2,5)

参考答案:C略10.如图,四棱柱ABCD﹣A1B1C1D1的底面ABCD是正方形,O为底面中心,A1O⊥平面ABCD,AB=AA1=.平面OCB1的法向量=(x,y,z)为()

A.(0,1,1) B.(1,﹣1,1) C.(0,1,﹣1) D.(﹣1,﹣1,1)参考答案:C【考点】平面的法向量.【专题】计算题;数形结合;数形结合法;空间向量及应用.【分析】易知=(1,0,0),=(1,1,0),从而可得=+=(1,1,1),结合?=x=0,?=x+y+z=0,从而解得.【解答】解:∵ABCD是正方形,且AB=,∴AO=OC=1,∴=(1,0,0),∵A(﹣1,0,0),B(0,1,0),∴=(1,1,0),∴=(1,1,0),∵OA=1,AA1=,∴OA1==1,故=(0,0,1),故=+=(1,1,1),∵向量=(x,y,z)是平面OCB1的法向量,∴?=x=0,?=x+y+z=0,故x=0,y=﹣z,结合选项可知,当y=1时,z=﹣1,故选:C.【点评】本题考查了空间向量的应用及平面的法向量的求法.二、填空题:本大题共7小题,每小题4分,共28分11.过点作倾斜角为的直线与交于,则的弦长为.参考答案:12.△的三个内角所对的边分别为,若,则

.参考答案:13.抛物线y2=2px(p>0)上一点M(1,m)(m>0)到其焦点的距离为5,双曲线的左顶点为A.若双曲线的一条渐近线与直线AM平行,则实数a等于.参考答案:【考点】抛物线的简单性质;双曲线的简单性质.【分析】由题意可求抛物线线y2=2px的准线,从而可求p,,进而可求M,由双曲线方程可求A,根据双曲线的一条渐近线与直线AM平行,则由斜率相等可求a【解答】解:由题意可知:抛物线线y2=2px(p>0)的准线方程为x=﹣4∴p=8则点M(1,4),双曲线的左顶点为A(﹣,0),所以直线AM的斜率为k=,由题意可知:∴故答案为:14.如图,设边长为1的正方形纸片,以为圆心,为半径画圆弧,裁剪的扇形围成一个圆锥的侧面,余下的部分裁剪出它的底面.当圆锥的侧面积最大时,圆锥底面的半径____________.参考答案:略15.9支球队中,有5支亚洲队,4支非洲队,从中任意抽2队进行比赛,则两洲各有一队的概率是

.参考答案:16.在矩形ABCD中,对角线AC与相邻两边所成的角为α,β,则cos2α+cos2β=1.类比到空间中一个正确命题是:在长方体ABCD﹣A1B1C1D1中,对角线AC1与相邻三个面所成的角为α,β,γ,则有

.参考答案:cos2α+cos2β+cos2γ=2【考点】F3:类比推理.【分析】本题考查的知识点是类比推理,由在长方形中,设一条对角线与其一顶点出发的两条边所成的角分别是α,β,则有cos2α+cos2β=1,根据长方体性质可以类比推断出空间性质,从而得出答案.【解答】解:我们将平面中的两维性质,类比推断到空间中的三维性质.由在长方形中,设一条对角线与其一顶点出发的两条边所成的角分别是α,β,则有cos2α+cos2β=1,我们根据长方体性质可以类比推断出空间性质,∵长方体ABCD﹣A1B1C1D1中,对角线AC1与过A点的三个面ABCD,AA1B1B、AA1D1D所成的角分别为α,β,γ,∴cosα=,cosβ=,cosγ=,∴cos2α+cos2β+cos2γ===2.故答案为:cos2α+cos2β+cos2γ=2.【点评】本题考查的知识点是类比推理,在由平面图形的性质向空间物体的性质进行类比时,常用的思路有:由平面图形中点的性质类比推理出空间里的线的性质,由平面图形中线的性质类比推理出空间中面的性质,由平面图形中面的性质类比推理出空间中体的性质,或是将平面中的两维性质,类比推断到空间中的三维性质.17.若圆锥的侧面积是底面积的3倍,则其母线与底面角的大小为

(结果用反三角函数值表示).参考答案:.设圆锥的底面半径为,母线长为,由题意,即,母线与底面夹角为,则为,.【考点】圆锥的性质,圆锥的母线与底面所成的角,反三角函数.

三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分12分)已知中心在原点O,焦点在x轴上的椭圆E过点,离心率为.(1)求椭圆E的方程;(2)设过定点的直线l与椭圆E交于不同的两点A,B,且,求直线l的斜率k的取值范围;参考答案:解:(1)设椭圆的方程为:

,由已知:得:,,所以,椭圆的方程为:.

……………(4分)(2)由题意,直线斜率存在,故设直线的方程为由得

……………(6分)由即有

……………(8分)即有解得

……………(10分)综上:实数的取值范围为……………(12分)

19.如图所示,在四棱锥P﹣ABCD中,底面ABCD为正方形,侧棱PA⊥底面ABCD,PA=AD=1,E、F分别为PD、AC的中点.(Ⅰ)求证:EF∥平面PAB;(Ⅱ)求直线EF与平面ABE所成角的大小.参考答案:【考点】直线与平面所成的角;直线与平面平行的判定.【分析】(Ⅰ)取PA中点M,AB中点N,连接MN,NF,ME,容易证明四边形MNFE为平行四边形,所以EF∥MN,所以得到EF∥平面PAB;(Ⅱ)分别以向量的方向为x轴,y轴,z轴的正方向建立空间直角坐标系A﹣xyz.可以确定点P,A,B,C,D,E,F的坐标,从而确定向量的坐标,设平面ABE的法向量为,根据即可求得一个法向量,根据法向量和向量的夹角和EF与平面ABE所成的角的关系即可求出所求的角.【解答】解:(Ⅰ)证明:分别取PA和AB中点M,N,连接MN、ME、NF,则NF∥AD,且NF=,ME∥AD,且ME=,所以NF∥ME,且NF=ME所以四边形MNFE为平行四边形;∴EF∥MN,又EF?平面PAB,MN?平面PAB,∴EF∥平面PAB;(Ⅱ)由已知:底面ABCD为正方形,侧棱PA⊥底面ABCD,所以AP,AB,AD两两垂直;如图所示,以A为坐标原点,分别以为x轴,y轴,z轴的正方向,建立空间直角坐标系A﹣xyz,所以:P(0,0,1),A(0,0,0,),B(1,0,0),C(1,1,0),D(0,1,0),;∴,;设平面ABE法向量,则;∴令b=1,则c=﹣1,a=0;∴为平面ABE的一个法向量;设直线EF与平面ABE所成角为α,于是:;所以直线EF与平面ABE所成角为.20.(Ⅰ)证明:;(Ⅱ)已知:a,b,c均为实数,且,,,求证:a,b,c中至少有一个大于0.参考答案:略21.(本小题满分13分)已知向量,,设,.(Ⅰ)若,求当取最小值时实数的值;(Ⅱ)若,问:是否存在实数,使得向量和向量的夹角为,若存在,请求出t的值;若不存在,请说明理由.参考答案:解:(Ⅰ)因为a=,b=(),,

则====

所以当时,取到最小值,最小值为.…….6分(Ⅱ)由条件得cos45=,又因为

==,==,,

则有=,且,

整理得,所以存在=满足条件.…..13分略22.(本小题满分12分)某企业有两个分厂生产某种零件,按规定内径尺寸(单位:mm)的值落在(29.9

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论