版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年山西省太原市同心外国语学校高一数学文下学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.函数与图像的交点个数是(
). A.0 B.1 C.2 D.3参考答案:D解:函数与的图象的交点个数即函数的零点的个数.显然,和是函数的两个零点.再由,,可得,故函数在区间上有一个零点.故函数与的图象的交点个数为.故选.2.同时抛掷三枚硬币,则抛掷一次时出现两枚正面一枚反面的概率为(
)A. B. C. D.参考答案:B【分析】根据二项分布的概率公式求解.【详解】每枚硬币正面向上的概率都等于,故恰好有两枚正面向上的概率为:.故选B.【点睛】本题考查二项分布.本题也可根据古典概型概率计算公式求解.3.下列函数与函数y=x相等的是()A. B. C. D.参考答案:C【考点】函数的概念及其构成要素.【分析】已知函数的定义域是R,分别判断四个函数的定义域和对应关系是否和已知函数一致即可.【解答】解:A.函数的定义域为{x|x≥0},两个函数的定义域不同.B.函数的定义域为R,y=|x|,对应关系不一致.C.函数的定义域为R,两个函数的定义域和对应关系相同,是同一函数.D.函数的定义域为{x|x≠0},两个函数的定义域不同.故选C.4.若则的值等于(
)
A.
B.
C.
D.参考答案:A5.要得到函数的图象,只需将函数的图象(
)A.向左平移个长度单位
B.向右平移个长度单位C.向左平移个长度单位
D.向右平移个长度单位参考答案:B6.规定甲乙两地通话分钟的电话费由(单位:元)给出,其中,记大于或等于的最小整数(如:),若从甲地到乙地通话费用为元,则通话时间的取值范围是A.
B.
C.
D.参考答案:B7.设函数f(x)的定义域D,如果存在正实数m,使得对任意x∈D,都有f(x+m)>f(x),则称f(x)为D上的“m型增函数”.已知函数f(x)是定义在R上的奇函数,且当x>0时,f(x)=|x﹣a|﹣a(a∈R).若f(x)为R上的“20型增函数”,则实数a的取值范围是()A.a>0 B.a<5 C.a<10 D.a<20参考答案:C【考点】函数的值.【专题】计算题;新定义;转化思想;综合法;函数的性质及应用.【分析】由已知得f(x)=,f(x+20)>f(x),由此能求出实数a的取值范围.【解答】解:∵函数f(x)是定义在R上的奇函数,且当x>0时,f(x)=|x﹣a|﹣a(a∈R),∴f(x)=,∵f(x)为R上的“20型增函数”,∴f(x+20)>f(x),当x=0时,|20﹣a|﹣a>0,解得a<10.∴实数a的取值范围是a<10.故选:C.【点评】本题考查实数的取值范围的求法,是基础题,解题时要认真审题,注意新定义的正确理解.8.若x、y满足约束条件,则的最小值是(
)A.-3 B.0 C. D.3参考答案:A【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【详解】约束条件,表示的可行域如图,解得,解得,解得,把、、分别代入,可得的最小值是,故选A.【点晴】1.求目标函数的最值的一般步骤为:一画二移三求.其关键是准确作出可行域,理解目标函数的意义.2.常见的目标函数截距型:形如.求这类目标函数的最值常将函数转化为直线的斜截式:,通过求直线的截距的最值,间接求出的最值.注意:转化的等价性及几何意义.9.若函数,则
=(
)A.
B.
C.
D.参考答案:D10.直线l过点(-1,2),且与直线2x-3y+4=0垂直,则l的方程是()A.3x+2y-1=0
B.3x+2y+7=0
C.2x-3y+5=0
D.2x-3y+8=0参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11.已知p:“x2-3x-4=0”,q:“x=4”,则p是q的________条件.参考答案:必要不充分解析:根据题意,p:“x2-3x-4=0”,即x=4或-1,则有若q:x=4成立,则有p:“x2-3x-4=0”成立,反之若p:“x2-3x-4=0”成立,则q:x=4不一定成立,则p是q的必要不充分条件.12.函数的定义域为_________.参考答案:【分析】根据正切函数的定义域求解即可.【详解】解得:故函数定义域为【点睛】本题考查了正切函数的定义域,属于基础题.13.已知函数f(x)=,若方程f(x)=t,(t∈R)有四个不同的实数根x1,x2,x3,x4,则x1x2x3x4的取值范围为. 参考答案:(32,34)【考点】根的存在性及根的个数判断. 【专题】计算题;作图题;转化思想;数形结合法;函数的性质及应用. 【分析】作函数f(x)=的图象,从而可得x1x2=1,且x3+x4=12,(4<x3<6﹣),从而解得. 【解答】解:作函数f(x)=的图象如下, , 结合图象可知,﹣log2x1=log2x2, 故x1x2=1, 令x2﹣12x+34=0得,x=6±, 令x2﹣12x+34=2得,x=6±2; 故x3+x4=12,(4<x3<6﹣), 故x1x2x3x4=x3x4 =x3(12﹣x3) =﹣(x3﹣6)2+36, ∵4<x3<6﹣, ∴﹣2<x3﹣6<﹣, ∴32<﹣(x3﹣6)2+36<34, 故答案为:(32,34). 【点评】本题考查了数形结合的思想应用及学生的作图能力,同时考查了配方法的应用. 14.已知函数f(x)=,则f(f())=
;当f(f(x0))≥时x0的取值范围是.参考答案:,[,1]∪[729,+∞).【考点】分段函数的应用.【分析】f()==﹣,即可求出f(f())==;利用f(f(x0))≥,结合分段函数,即可求出当f(f(x0))≥时x0的取值范围.【解答】解:f()==﹣,∴f(f())==,,0≥x≥﹣,∴0≥,∴;x>0时,,∴x≥3,log9x0≥3,∴x0≥729,综上所述,f(f(x0))≥时x0的取值范围是[,1]∪[729,+∞).故答案为,[,1]∪[729,+∞).15.已知A(2,3),B(1,4)且,则α+β=.参考答案:【考点】GI:三角函数的化简求值.【分析】由题意可得=(﹣,),再根据=(sinα,cosβ),α、β∈(﹣,0),求得α和β的值,可得α+β的值.【解答】解:A(2,3),B(1,4)且=?(﹣1,1)=(﹣,),又,∴sinα=﹣,cosβ=,∴α=﹣,β=,则α+β=,故答案为:.【点评】本题主要考查两个向量坐标形式的运算,根据三角函数的值求角,属于基础题.16.函数f(x)=cos(x+)的图象向右平移φ(φ>0)个单位,所得函数图象关于y轴对称,则φ的最小值为.参考答案:
【考点】函数y=Asin(ωx+φ)的图象变换.【分析】函数f(x)=cos(x+)的图象向右平移φ个单位所得图象关于y轴对称,可得出函数的形式变为了y=cos(φ+),k∈z,由余弦函数的对称性此得出φ的表达式判断出φ的最小正值得出答案.【解答】解:∵函数f(x)=cos(x+)的图象向右平移φ个单位,所得图象对应的函数解析式为:y=cos(φ+)由于其图象关于y轴对称,∴φ+=kπ,k∈z,∴φ=﹣2kπ,k∈z,由φ>0,可得:当k=0时,φ的最小正值是.故答案为:【点评】本题考查函数y=Asin(ωx+φ)的图象变换,解题的关键是熟练掌握、理解三角函数图象的变换规律,由这些规律得到关于φ的方程,再根据所得出的方程判断出φ的最小正值,本题考查图象变换,题型新颖,题后注意总结此类题的做题规律,在近几年的高考中,此类题出现频率较高,应多加重视.17.在空间直角坐标系中,已知点A(1,0,2),B(1,-3,1),点M在y轴上,且M到A与到B的距离相等,则M的坐标是
。参考答案:(0,-1,0)三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(1)已f()=,求f(x)的解析式.w.w.w.k.s.5.u.c.o.m
(2)已知y=f(x)是一次函数,且有f[f(x)]=9x+8,求此一次函数的解析式.
参考答案:解析:(1)设(x≠0且x≠1)(2)设f(x)=ax+b,则f[f(x)]=af(x)+b=a(ax+b)+b=a2x+ab+b=9x+819.(本小题满分12分)如图,在四棱锥P—ABCD中,底面是边长为的菱形,且∠BAD=120°,且PA⊥平面ABCD,PA=,M,N分别为PB,PD的中点.(Ⅰ)证明:MN∥平面ABCD;(Ⅱ)过点A作AQ⊥PC,垂足为点Q,求二面角A—MN—Q的平面角的余弦值.
参考答案:(Ⅰ)如图连接BD]∵M,N分别为PB,PD的中点,∴在PBD中,MN∥BD.又MN平面ABCD,
∴MN∥平面ABCD;(Ⅱ)如图建系:A(0,0,0),P(0,0,),M(,,0),N(,0,0),C(,3,0).
22设Q(x,y,z),则.
∵,∴.由,得:.
即:.对于平面AMN:设其法向量为.∵.则.
∴.同理对于平面AMN得其法向量为.记所求二面角A—MN—Q的平面角大小为,则.∴所求二面角A—MN—Q的平面角的余弦值为.20.(I)画出函数f(x)=,的图象;(II)讨论当为何实数值时,方程在上的解集为空集、单元素集、两元素集?
参考答案:解:(I)图象如右图所示,其中不含点,含点.(II)原方程的解与两个函数,和的图象的交点构成一一对应.易用图象关系进行观察.(1)
当或时,原方程在上的解集为空集;(2)
当或时,原方程在上的解集为单元素集;(3)
当时,原方程在上的解集为两元素集.略21.计算:(1);
(2)2××(3)已知x+x﹣1=3,求的值.参考答案:【考点】对数的运算性质;有理数指数幂的化简求值.【专题】计算题;函数思想;函数的性质及应用.【分析】(1)利用对数运算法则化简求解即可.(2)利用根式的运算法则化简求解即可.(3)利用已知条件同分平方运算法则求解即可.【解答】解:(1)===1;
(2)2××=2×=6.(3)已知x+x﹣1=3,=x+x﹣1+2=5,=,(x﹣x﹣1)2=x2+x﹣2﹣2=7,x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 新建加油站钢筋施工方案及流程
- 招标货物运输服务招标信息
- 房屋买卖合同中的保证人角色解读
- 建筑工地锚索分包劳务协议
- 爱的无条件诺言
- 砌筑分包工程劳务合作协议
- 月嫂服务合同签订要点
- 棉拖鞋生产协议
- 房屋预售合同买卖风险
- 绿色有机大米和食用油订购合同
- 2024年秋国家开放大学会计信息系统(本)客观题及答案
- 在线招聘平台人才匹配算法优化与应用推广
- 重庆B卷历年中考语文现代文阅读之非连续性文本阅读5篇(含答案)(2003-2023)
- 干部任免审批表样表
- DB62T 4872-2024 养老护理员培训基地建设规范
- 2024年大学班主任工作总结经典版(4篇)
- 冬季防冻防滑防火安全教育主题班会市公开课一等奖省赛课微课金奖课件
- 四川省绵阳市2023-2024学年高一上学期期末检测英语试题(解析版)
- 《生活中的比》(教学设计)-2023-2024学年北师大版数学六年级上册
- 中医内科学智慧树知到答案2024年浙江中医药大学
- 都江堰卫生系统考试真题
评论
0/150
提交评论