湖南省衡阳市桐黄中学2022-2023学年高一数学理期末试卷含解析_第1页
湖南省衡阳市桐黄中学2022-2023学年高一数学理期末试卷含解析_第2页
湖南省衡阳市桐黄中学2022-2023学年高一数学理期末试卷含解析_第3页
湖南省衡阳市桐黄中学2022-2023学年高一数学理期末试卷含解析_第4页
湖南省衡阳市桐黄中学2022-2023学年高一数学理期末试卷含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省衡阳市桐黄中学2022-2023学年高一数学理期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若直线与圆有两个不同的交点,则点圆C的位置关系是(

)A.点在圆上 B.点在圆内 C.点在圆外

D.不能确定参考答案:C略2.甲船在B岛的正南方向A处,AB=10千米,甲船以4千米/小时的速度向正北方向航行,同时,乙船自B岛出发以6千米/小时的速度向北偏东60°的方向驶去,航行时间不超过2.5小时,则当甲、乙两船相距最近时,它们航行的时间是(

)A.2小时

B.小时

C.

小时

D.小时参考答案:C假设经过小时两船相距最近,甲乙分别行至如图所示,可知,,由二次函数的性质可得,当小时距离最小,故选C.

3.设全集,,则A=(

).

.

..参考答案:B4.集合则的值是(

)A.

B.或

C.0

D.2参考答案:C5.三角函数y=sin是(

)A.周期为4π的奇函数

B.周期为的奇函数C.周期为π的偶函数 D.周期为2π的偶函数

参考答案:A略6.偶函数在区间上是减函数且有最小值,那么在上是(

)A.减函数且有最大值

B.减函数且有最小值C.增函数且有最大值

D.增函数且有最小值参考答案:D7.函数在上递减,那么在上(

).A.递增且有最大值

B.递减且无最小值

C.递增且无最大值

D.递减且有最小值参考答案:A令,是的递减区间,即,是的递增区间,即递增且无最大值.8.如图,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,底面是边长为2的正三角形,侧棱长为3,则AA1与平面AB1C1所成的角为(

)A. B. C. D.参考答案:A【分析】取的中点,连接、,作,垂足为点,证明平面,于是得出直线与平面所成的角为,然后利用锐角三角函数可求出。【详解】如下图所示,取的中点,连接、,作,垂足为点,是边长为2的等边三角形,点为的中点,则,且,在三棱柱中,平面,平面,,,平面,平面,,,,平面,所以,直线与平面所成的角为,易知,在中,,,,,,即直线与平面所成的角为,故选:A。【点睛】本题考查直线与平面所成角计算,求解时遵循“一作、二证、三计算”的原则,一作的是过点作面的垂线,有时也可以通过等体积法计算出点到平面的距离,利用该距离与线段长度的比值作为直线与平面所成角的正弦值,考查计算能力与推理能力,属于中等题。9.a=log2,b=()0.2,c=2,则(

)A.b<a<c B.c<b<a C.c<a<b D.a<b<c参考答案:D【考点】对数值大小的比较.【专题】转化思想;数学模型法;函数的性质及应用.【分析】利用指数函数与对数函数的单调性即可得出.【解答】解:∵a=log2<0,0<b=()0.2<1,c=2>1,∴c>b>a,故选:D.【点评】本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于中档题.10.已知向量=(1,﹣2),=(3,m),若∥(2+),则实数m的值为()A.﹣6 B. C.6 D.参考答案:A【考点】平面向量共线(平行)的坐标表示.【分析】由已知向量的坐标求得2+的坐标,然后利用向量共线的条件列式得答案.【解答】解:∵向量=(1,﹣2),=(3,m),∴2+=(5,﹣4+m),∵∥(2+),∴1×(﹣4+m)﹣5×(﹣2)=0,∴m=﹣6,故选:A.二、填空题:本大题共7小题,每小题4分,共28分11.若向量a、b满足|a|=1,|b|=2,且a与b的夹角为,则|a+b|=________.

参考答案:12.在平行四边形ABCD中,已知A-1,2,B3,4,C3,0,则该平行四形的面积为

.参考答案:1613.求函数的单调减区间为__________.参考答案:14.已知数列满足则的通项公式

。参考答案:=2n15.高一某班有学生45人,其中参加数学竞赛的有32人,参加物理竞赛的有28人,另外有5人两项竞赛均不参加,则该班既参加数学竞赛又参加物理竞赛的有______人.参考答案:2016.已知函数y=log(x2﹣ax+a)在(3,+∞)上是减函数,则a的取值范围是.参考答案:(﹣∞,]【考点】复合函数的单调性.【专题】计算题;函数思想;转化思想;数学模型法;函数的性质及应用.【分析】函数为复合函数,且外函数为减函数,只要内函数一元二次函数在(3,+∞)上是增函数且在(3,+∞)上恒大于0即可,由此得到关于a的不等式求解.【解答】解:令t=x2﹣ax+a,则原函数化为,此函数为定义域内的减函数.要使函数y=log(x2﹣ax+a)在(3,+∞)上是减函数,则内函数t=x2﹣ax+a在(3,+∞)上是增函数,∴,解得:a.∴a的取值范围是(﹣∞,].故答案为:(﹣∞,].【点评】本题考查复合函数的单调性,复合的两个函数同增则增,同减则减,一增一减则减,注意对数函数的定义域是求解的前提,考查学生发现问题解决问题的能力,是中档题.17.网络上流行一种“QQ农场游戏”,这种游戏通过虚拟软件模拟种植与收获的过程.为了了解本班学生对此游戏的态度,高三(6)班计划在全班60人中展开调查,根据调查结果,班主任计划采用系统抽样的方法抽取若干名学生进行座谈,为此先对60名学生进行编号为:01,02,03,…60,已知抽取的学生中最小的两个编号为03,09,则抽取的学生中最大的编号为________.参考答案:57由最小的两个编号为03,09可知,抽取人数的比例为,即抽取10名同学,其编号构成首项为3,公差为6的等差数列,故最大编号为3+9×6=57.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数f(x)=x2+2ax+2,x∈[﹣5,5](Ⅰ)若y=f(x)在[﹣5,5]上是单调函数,求实数a取值范围.(Ⅱ)求y=f(x)在区间[﹣5,5]上的最小值.参考答案:【考点】二次函数的性质.【专题】函数思想;综合法;函数的性质及应用.【分析】先求出函数f(x)的对称轴,(1)根据函数的单调性求出a的范围即可;(2)通过讨论a的范围,结合函数的单调性求出函数的最小值即可.【解答】解:函数f(x)=x2+2ax+2,x∈[﹣5,5]的对称轴为x=﹣a,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(1)若y=f(x)在[﹣5,5]上是单调函数,则﹣a≤﹣5或﹣a≥5,即a≤﹣5或a≥5.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(2)①﹣a≤﹣5,即a≥5时,f(x)在[﹣5,5]上单调递增,f(x)的最小值是f(﹣5)=27﹣10a,﹣﹣﹣﹣②﹣a≥5,即a≤﹣5时,f(x)在[﹣5,5]上单调递减,f(x)的最小值是f(5)=27+10a﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣③﹣5<﹣a<5,即﹣5<a<5时,f(x)在[﹣5,﹣a]上单调递减,f(x)在(﹣a,5]上单调递增,f(x)的最小值是f(﹣a)=﹣a2+2﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣【点评】本题考查了二次函数的性质,考查函数的单调性、最值问题,是一道中档题.19.已知函数f(x)=sinx+cosx,x∈R.(Ⅰ)求f()的值;(Ⅱ)试写出一个函数g(x),使得g(x)f(x)=cos2x,并求g(x)的单调区间.参考答案:【考点】三角函数中的恒等变换应用;两角和与差的正弦函数;正弦函数的图象.【专题】三角函数的图像与性质.【分析】(Ⅰ)把函数解析式提取后利用两角和的正弦化积,然后直接取x=求得f()的值;(Ⅱ)由二倍角的余弦公式可知g(x)=cosx﹣sinx,化积后利用余弦型复合函数的单调性求函数g(x)的单调区间.【解答】解:(Ⅰ)f(x)=sinx+cosx=,∴;(Ⅱ)g(x)=cosx﹣sinx.下面给出证明:∵g(x)f(x)=(cosx﹣sinx)(sinx+cosx)=cos2x﹣sin2x=cos2x,∴g(x)=cosx﹣sinx符合要求.又∵g(x)=cosx﹣sinx=,由,得,∴g(x)的单调递增区间为,k∈Z.又由,得,∴g(x)的单调递减区间为,k∈Z.【点评】本小题主要考查三角函数的图象与性质、两角和与差三角公式、二倍角公式、三角函数的恒等变换等基础知识,考查运算求解能力,考查化归与转化思想等.是中档题.20.(13分)已知三棱锥P﹣ABC中,PC⊥底面ABC,AB=BC,D、F分别为AC、PC的中点,DE⊥AP于E.(Ⅰ)求证:AP⊥平面BDE;(Ⅱ)求证:平面BDE⊥平面BDF.参考答案:考点: 平面与平面垂直的判定;直线与平面垂直的判定.专题: 空间位置关系与距离.分析: (Ⅰ)利用线面垂直的判定定理易证BD⊥平面PAC,于是有PA⊥BD,再利用线面垂直的判定定理即可证得AP⊥平面BDE;(Ⅱ)依题意知,DF∥AP,而AP⊥DE,于是可得DF⊥DE,即平面BDE与平面BDF的二面角为直角,从而可证平面BDE⊥平面BDF.解答: (Ⅰ)∵PC⊥底面ABC,BD?底面ABC,∴PC⊥BD;又AB=BC,D为AC的中点,∴BD⊥AC,PC∩AC=C,∴BD⊥平面PAC,PA?平面PAC,∴PA⊥BD,又DE⊥AP,BD∩DE=E,∴AP⊥平面BDE;(Ⅱ)由AP⊥平面BDE知,AP⊥DE;又D、F分别为AC、PC的中点,∴DF是△PAC的中位线,∴DF∥AP,∴DF⊥DE,即∠EDF=90°,由BD⊥平面PAC可知,DE⊥BD,DF⊥BD,∠EDF为平面BDE与平面BDF的二面角,又∠E

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论