版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
基于主元分析的故障诊断详解演示文稿本文档共25页;当前第1页;编辑于星期六\2点10分(优选)基于主元分析的故障诊断本文档共25页;当前第2页;编辑于星期六\2点10分多元统计分析多元统计分析是从经典统计学中发展起来的一个分支,是一种综合分析方法,它能够在多个对象和多个指标互相关联的情况下分析它们的统计规律。主要内容包括多元正态分布及其抽样分布、多元正态总体的均值向量和协方差阵的假设检验、多元方差分析、直线回归与相关、多元线性回归、主成分分析与因子分析、判别分析与聚类分析、Shannon信息量及其应用。如果每个个体有多个观测数据,或者从数学上说,如果个体的观测数据能表为P维欧几里得空间的点,那么这样的数据叫做多元数据,而分析多元数据的统计方法就叫做多元统计分析。本文档共25页;当前第3页;编辑于星期六\2点10分基于多元统计分析的故障诊断方法基于多元统计分析的故障诊断方法是利用过程多个变量之间的相关性对过程进行故障诊断。这类方法根据过程变量的历史数据,利用多元投影的方法将多变量样本空间分解成由主元空间张成的较低维的投影子空间和一个相应的残差子空间,并分别在这两个子空间进行投影,并计算相应的统计量指标用于过程监控,从而达到故障检测和诊断的目的。
常用的多元统计分析的方法有两种:主元分析(PCA)和偏最小二乘(PLS)。本文档共25页;当前第4页;编辑于星期六\2点10分主元分析(PCA)的思想
PCA是Principalcomponentanalysis的缩写,是一种对数据进行分析的技术,最重要的应用是对原有的数据进行简化。主元分析法可以有效地找出数据中最“主要”的元素和结构,取出噪音和冗余,将原有的复杂数据降维,揭示隐藏在复杂数据背后的简单结构。
先从一个简单的物理实验的例子开始说明这种思想。本文档共25页;当前第5页;编辑于星期六\2点10分主元分析(PCA)的目的
对于一个有先验知识的实验者来说,这个实验很容易。球的运动之在x轴方向上发生,y轴和z轴冗余的,只需要记录一下x轴上的运动序列并加以分析即可。
可是,在真实世界中,对于第一次做实验的人来说(或者在实验科学中遇到的一种新情况),是不会刚开始就舍弃y和z轴的信息的。一般来说,实验者会记录球的三维位置,得到球在空间中的运动序列然后进行分析。
在没有先验知识的情况下,利用测到的数据将实验数据中的冗余变量剔除并化归到x轴上,这就是简单的主元分析达到得的效果(显然x轴方向是上述问题的主元)。本文档共25页;当前第6页;编辑于星期六\2点10分主元分析(PCA)的思想
主元分析一项十分著名的工作是美国的统计学家斯通在1947年关于国民经济的研究。他曾用美国在1929—1938年各年的数据,得到了17个反映国民收入与支出的变量要素,例如雇主补贴、消费资料和生产资料、纯公共指出、净增库存、股息、利息和外贸平衡等等。
在进行主成分分析后,他竟以97.4%的精度,用三个新变量就取代了原来17个变量。根据经济学知识,斯通给这三个新变量分别命名为总收入F1、总收入变化率F2和经济发展或衰退的趋势F3(这三个变量其实是可以通过直接测量得到的)。
在现在的研究中,为了全面系统地分析和研究问题,必须考虑许多指标,这些指标能从不同的侧面反映我们所研究的对象的特征,但在某种程度上存在信息的重叠,也就是这些信息之间具有一定的相关性。
主成分分析试图保证数据信息丢失最少的原则下,对多面辆的数据表进行最佳综合简化,也就是说,对高维变量空间进行降维处理。显然辨识系统在一个低维空间要比在一个高维空间容易很多。本文档共25页;当前第7页;编辑于星期六\2点10分主元分析(PCA)的几何解释
本文档共25页;当前第8页;编辑于星期六\2点10分
设有n个样品,每个样品有两个观测变量x1和x2,在由变量x1和x2所定的二维平面中,n个样本点所散布的情况如椭圆状。
如图可以看出这n个样本点无论是沿着x1轴的方向还是x2轴方向都具有较大的离散型,其离散的程度可以分别用观测变量x1的方差和x2的方差定量地表示。显然,如果只考虑x1和x2中的任何一个,那么包含在原始数据中的信息将会有较大的损失。主元分析(PCA)的几何解释本文档共25页;当前第9页;编辑于星期六\2点10分
主元分析(PCA)的几何解释本文档共25页;当前第10页;编辑于星期六\2点10分
主元分析(PCA)的几何解释如果我们将x1轴和x2轴先平移,再同时按逆时针方向旋转角度,得到新坐标轴F1和F2。F1和F2是两个新变量。旋转变换的目的是为了使n个样品点在F1轴方向上的离散程度最大,即F1的方差最大。变量F1代表了原始数据的绝大部分信息,在研究某些问题时,即使不考虑变量F2也无损大局。经过上述变换,原始数据的大部分信息集中到F1轴上,对数据中包含的信息起到了浓缩作用。本文档共25页;当前第11页;编辑于星期六\2点10分
主元分析(PCA)的几何解释
为旋转变换矩阵,它是正交矩阵,则有F1,F2除了可以对包含在X1,X2中的信息起着浓缩作用之外,还具有不相关的性质,这就使得在研究复杂问题时避免了信息重叠所带来的虚假性。二维平面上的n个点的方差大部分都归结在F1轴上,而F2轴上的方差很小。F1和F2成为原始变量x1和x2的综合变量。F简化了系统结构,抓主了主要矛盾。本文档共25页;当前第12页;编辑于星期六\2点10分
主元分析(PCA)的一般化模型一般化,假设我们所讨论的实际问题中,有p个指标,我们把这p个指标看作p个随机变量,记为X1,X2,…XP,主要成分分析就是要把这p个指标的问题,转变为讨论p个指标的线性组合的问题,而这些新的指标F1,F2,…,Fk(k<=p),按照保留主要信息量的原则充分反映原指标的信息,并且相互独立。建立新指标的过程也就是实现降维的过程。主成分分析通常的做法是,寻求原指标的线性组合Fi:
本文档共25页;当前第13页;编辑于星期六\2点10分
主元分析(PCA)的一般化模型模型满足如下条件:每个主成分的系数平方和为1,即主成分之间相互独立,即无重叠的信息:主成分的方差依次递减,重要性依次递减:本文档共25页;当前第14页;编辑于星期六\2点10分
主元分析(PCA)的步骤(含例子)
接下来,用一个实例来陈述主元分析的具体步骤:第一步:获得数据
在简单的例子中,使用自己制作的2维数据:x=[2.5,0.5,2.2,1.9,3.1,2.3,2.0,1.0,1.5,1.1]T
y=[2.4,0.7,2.9,2.2,3.0,2.7,1.6,1.1,1.6,0.9]T第二步:减去均值
要使PCA正常工作,必须减去数据的均值。减去的均值为每一维的平均,所有的x值都要减去,同样所有的y值都要减去,这样处理后的数据都具有0均值。x=[0.69,-1.31,0.39,0.09,1.29,0.49,0.19,-0.81,-0.31,-0.71]Ty=[0.49,-1.21,0.99,0.29,1.09,0.79,-0.31,-0.81,-0.31,-1.01]T;本文档共25页;当前第15页;编辑于星期六\2点10分
主元分析(PCA)的步骤(含例子)
第三步:计算协方差矩阵
因为数据是2维的,它的协方差矩阵就是2X2维的,这里直接给出结果:因为非对角元素是正的,我们可以期望和变量一起增大。第四步:计算协方差矩阵的特征矢量和特征值(确定主元以及变换矩阵)
因为协方差矩阵为方阵,我们可以计算它的特征矢量和特征值,它可以告诉我们数据的有用信息。我们数据的特征值和特征矢量分别为:本文档共25页;当前第16页;编辑于星期六\2点10分
主元分析(PCA)的步骤(含例子)
第五步:选择成分组成模式矢量现在可以进行数据压缩降低维数了。事实上,可以证明对应最大特征值的特征矢量就是数据的主成分。在我们的例子中,对应大特征值的特征矢量就是那条穿过数据中间的矢量,它是数据维数之间最大的关联。一般地,从协方差矩阵找到特征矢量以后,下一步就是按照特征值由大到小进行排列,这将给出成分的重要性级别。如果条件允许,可以忽略那些重要性很小的成分,当然这会丢失一些信息,但是如果对应的特征值很小,不会丢失很多信息。如果你已经忽略了一些成分,那么最后的数据集将有更少的维数,精确地说,如果原始数据是n维的,选择了前p个主要成分,那么现在的数据将仅有p维。接下来需要组成一个模式矢量,它由所有特征矢量构成,每一个特征矢量是这个矩阵的一列。用两个特征矢量组成模式矢量:
本文档共25页;当前第17页;编辑于星期六\2点10分
主元分析(PCA)的步骤(含例子)
忽略其中较小特征值的一个特征矢量,剩下特征值大的特征向量:
第六步:获得新数据PCA最后一步,简单地对其进行转置,并将其左乘原始数据的转置:
得到的结果为:x=[-0.828,1.778,-0.992,-2.742,-1.676,-0.913,0.099,1.145,0.438,1.224]T其中rowFeatureVector是由特征矢量作为列组成的矩阵的转置,因此它的行就是原来的特征矢量,而且对应最大特征值的特征矢量在该矩阵的最上一行。rowdataAdjust是减去均值后的数据,即数据项目在每一列中,每一行就是一维。FinalData是最后得到的数据。原始数据有两个轴(x和y),原始数据按这两个轴分布。PCA将数据从原来的x、y轴表达变换为现在的单个特征矢量表达。本文档共25页;当前第18页;编辑于星期六\2点10分
主元分析(PCA)的步骤(含例子)
如果想恢复原来的数据,可以进行逆运算:
本文档共25页;当前第19页;编辑于星期六\2点10分
基于主元分析(PCA)的测量数据模型
本文档共25页;当前第20页;编辑于星期六\2点10分
基于主元分析(PCA)的测量数据模型
本文档共25
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024至2030年中国灯布拼接机数据监测研究报告
- 关于服装的促销活动方案
- 借款协议参考
- 2024至2030年中国斜面玻璃冷藏冷冻转换展示柜数据监测研究报告
- 餐饮业成本计算公式-记账实操
- 家具代工制造合同范本
- 信托国际展览参展合同
- 2024年中国长春花市场调查研究报告
- 2024年中国脱DMF匀泡剂市场调查研究报告
- 网站全球CDN加速服务合同
- MOOC 中国天气-南京信息工程大学 中国大学慕课答案
- 生命生态安全教学计划初中生
- 中医饮食营养学智慧树知到期末考试答案章节答案2024年滨州医学院
- 老年人能力评估服务项目管理制度
- 《电气装置安装工程 盘、柜及二次回路接线施工及验收规范》
- 部编版二年级上册语文《葡萄沟》精美
- 煤化工的应用及现状
- RRU设计原理与实现
- 2024校园安全事故案例
- 2023-2024学年上海市普陀区九年级上学期期中考试物理试卷含详解
- (新版)高考志愿填报师资格考试题库(浓缩500题)
评论
0/150
提交评论