初中数学沪科版八年级下册数据的初步分析20.2数据的集中趋势与离散程度“黄冈赛”一等奖_第1页
初中数学沪科版八年级下册数据的初步分析20.2数据的集中趋势与离散程度“黄冈赛”一等奖_第2页
初中数学沪科版八年级下册数据的初步分析20.2数据的集中趋势与离散程度“黄冈赛”一等奖_第3页
初中数学沪科版八年级下册数据的初步分析20.2数据的集中趋势与离散程度“黄冈赛”一等奖_第4页
初中数学沪科版八年级下册数据的初步分析20.2数据的集中趋势与离散程度“黄冈赛”一等奖_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

20.2数据的集中趋势与离散程度第20章数据的初步分析第5课时用样本方差估计总体方差沪科版八年级下学期课件情境引入学习目标1.理解方差的意义.2.能用样本的方差估计总体的方差及根据方差做决策.(重点、难点)

为了选拔一名同学参加某市中学生射击竞赛,某校对甲、乙两名同学的射击水平进行了测试,两人在相同条件下各射靶10次.

=7768678759乙成绩(环数)

=57109568677甲成绩(环数)X甲X乙77大家想想,我们应选甲还是乙,能否用你前面学的知识解决一下?中位数众数7777导入新课问题引入2.方差的计算公式:

,方差越大,

越大;方差越小,

越小.数据的波动数据的波动1.下列统计量中,能反映一名同学在7-9年级学段的学习成绩稳定程度的是()A.平均数B.中位数C.众数D.方差D3.在方差的计算公式中,数字10和20分别表示()A.样本的容量和方差B.平均数和样本的容量C.样本的容量和平均数D.样本的方差和平均数C复习导入4.已知一组数据-2,-1,0,x,1的平均数是0,那么这组数据的方差是

5.甲、乙两名战士在射击训练中,打靶的次数相同,且打中环数的平均数,如果甲的射击成绩比较稳定,那么方差的大小关系是S2甲

S2乙。2<引例:某篮球队对运动员进行3分球投篮成绩测试,每人每天投3分球10次,对甲、乙两名队员在五天中进球的个数统计结果如下:队员每人每天进球数甲1061068乙79789经过计算,甲进球的平均数为x甲=8,方差为.

合作探究活动:探究用样本的方差估计总体的方差并利用方差作决策(1)求乙进球的平均数和方差;(2)现在需要根据以上结果,从甲、乙两名队员中选出一人去参加3分球投篮大赛,你认为应该选哪名队员去?为什么?(1)在解决实际问题时,方差的作用是什么?

反映数据的波动大小.方差越大,数据的波动越大;方差越小,数据的波动越小,可用样本方差估计总体方差.(2)运用方差解决实际问题的一般步骤是怎样的?先计算样本数据平均数,当两组数据的平均数相等或相近时,再利用样本方差来估计总体数据的波动情况.知识要点

例2某农民几年前承包了甲、乙两片荒山,各栽了100棵蜜橘,成活98%,现已挂果,经济效益显著,为了分析经营情况,他从甲山随意采摘了3棵树上的蜜橘称得质量分别为25,18,20、21千克;他从乙山随意采摘了4棵树上的蜜橘,称得质量分别为21,24,19,20千克.如下表:(1)4+4=8;解:甲(千克)25182021乙(千克)21241920(1)样本容量是多少?(2)样本平均数是多少?并估算出甲、乙两山蜜橘的总产量?甲(千克)25182021乙(千克)21241920解:x甲=21,x乙=21(3)甲、乙两山哪个山上蜜橘长势较整齐?甲(千克)25182021乙(千克)21241920__(1)在解决实际问题时,方差的作用是什么?

反映数据的波动大小.方差越大,数据的波动越大;方差越小,数据的波动越小,可用样本方差估计总体方差.(2)运用方差解决实际问题的一般步骤是怎样的?先计算样本数据平均数,当两组数据的平均数相等或相近时,再利用样本方差来估计总体数据的波动情况.知识要点做一做

某跳远队准备从甲、乙两名运动员中选取成绩稳定的一名参加比赛.下表是这两名运动员10次测验成绩(单位:m):甲5.855.936.075.915.996.135.986.056.006.19乙6.116.085.835.925.845.816.186.175.856.21你认为应该选择哪名运动员参赛?为什么?【解】甲、乙测验成绩的平均数分别是x甲

=6.01,x乙=

6.方差分别是s2甲≈0.00954,s2乙≈0.02434.s2甲<s2乙,因此,甲成绩较稳定,应该选甲参加比赛.例2某校要从甲、乙两名跳远运动员中挑选一人参加一项校际比赛.在最近10次选拔赛中,他们的成绩(单位:cm)如下:甲:585596610598612597604600613601乙:613618580574618593585590598624(1)这两名运动员的运动成绩各有何特点?分析:分别计算出平均数和方差;根据平均数判断出谁的成绩好,根据方差判断出谁的成绩波动大.解:(585+596+610+598+612+597+604+600+613+601)=601.6,s2甲≈65.84;(613+618+580+574+618+593+585+590+598+624)=599.3,s2乙≈284.21.

由上面计算结果可知:甲队员的平均成绩较好,也比较稳定,乙队员的成绩相对不稳定.但甲队员的成绩不突出,乙队员和甲队员相比比较突出.(2)历届比赛表明,成绩达到5.96m就很可能夺冠,你认为为了夺冠应选谁参加这项比赛?如果历届比赛成绩表明,成绩达到6.10m就能打破纪录,那么你认为为了打破纪录应选谁参加这项比赛.解:从平均数分析可知,甲、乙两队员都有夺冠的可能.但由方差分析可知,甲成绩比较平稳,夺冠的可能性比乙大.但要打破纪录,成绩要比较突出,因此乙队员打破纪录的可能性大,我认为为了打破纪录,应选乙队员参加这项比赛.1.检查人员从两家的鸡腿中各随机抽取15个,记录它们的质量(单位:g)如下表所示.根据表中的数据,你认为快餐公司应该选购哪家加工厂的鸡腿?解:样本数据的平均数分别是:

样本平均数相同,估计这批鸡腿的平均质量相近.甲747475747673767376757877747273乙757379727671737278747778807175当堂练习解:样本数据的方差分别是:

由可知,两家加工厂的鸡腿质量大致相等;由<可知,甲加工厂的鸡腿质量更稳定,大小更均匀.因此,快餐公司应该选购甲加工厂生产的鸡腿.甲747475747673767376757877747273乙7573797276717372787477788071752.农科院计划为某地选择合适的甜玉米种子.选择种子时,甜玉米的产量和产量的稳定性是农科院所关心的问题.为了解甲、乙两种甜玉米种子的相关情况,农科院各用10块自然条件相同的试验田进行试验,得到各试验田每公顷的产量(单位:t)如下表:品种各试验田每公顷产量(单位:吨)甲7.657.507.627.597.657.647.507.407.417.41乙7.557.567.587.447.497.587.587.467.537.49

根据这些数据估计,农科院应该选择哪种甜玉米种子呢?农科院应该选择乙种甜玉米种子用样估计总体是统计的基本思想,正像用样本平均数估计总体平均数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论