版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省邵阳市育英高级中学2024学年高二上数学期末联考试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若双曲线经过点,且它的两条渐近线方程是,则双曲线的方程是()A. B.C. D.2.直线的倾斜角为()A.60° B.30°C.120° D.150°3.已知直线l:,则下列结论正确的是()A.直线l的倾斜角是B.直线l在x轴上的截距为1C.若直线m:,则D.过与直线l平行的直线方程是4.已知抛物线的焦点为F,过点F分别作两条直线,直线与抛物线C交于A、B两点,直线与抛物线C交于D、E两点,若与的斜率的平方和为2,则的最小值为()A.24 B.20C.16 D.125.设直线与双曲线(,)的两条渐近线分别交于,两点,若点满足,则该双曲线的离心率是()A. B.C. D.6.已知空间向量,,则()A. B.C. D.7.直线被圆所截得的弦长为()A. B.C. D.8.直线的斜率是()A. B.C. D.9.已知点,是椭圆:的左、右焦点,是的左顶点,点在过且斜率为的直线上,为等腰三角形,且,则的离心率为()A. B.C. D.10.已知椭圆方程为:,则其离心率为()A. B.C. D.11.已知,则a,b,c的大小关系为()A. B.C. D.12.某程序框图如图所示,该程序运行后输出的k的值是A.3 B.4C.5 D.6二、填空题:本题共4小题,每小题5分,共20分。13.已知焦点在轴上的双曲线,其渐近线方程为,焦距为,则该双曲线的标准方程为________14.设公差的等差数列的前项和为,已知,且,,成等比数列,则的最小值为______15.圆锥的高为1,底面半径为,则过圆锥顶点的截面面积的最大值为____________16.若,则与向量同方向的单位向量的坐标为____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)2021年国务院政府工作报告中指出,扎实做好碳达峰、碳中和各项工作,制定2030年前碳排放达峰行动方案,优化产业结构和能源结构.汽车行业是碳排放量比较大的行业之一,若现对CO2排放量超过130g/km的MI型新车进行惩罚(视为排放量超标),某检测单位对甲、乙两类MI型品牌的新车各抽取了5辆进行CO2排放量检测,记录如下(单位:g/km):甲80110120140150乙100120xy160经测算发现,乙类品牌车CO2排放量的均值为乙=120g/km.(1)求甲类品牌汽车的排放量的平均值及方差;(2)若乙类品牌汽车比甲类品牌汽车CO2的排放量稳定性好,求x的取值范围.18.(12分)已知函数.(1)判断的单调性.(2)证明:.19.(12分)已知的顶点,边上的中线所在直线方程为,边上的高所在直线方程为.求:(1)顶点的坐标;(2)直线的方程.20.(12分)为了讴歌中华民族实现伟大复兴的奋斗历程,增进学生对中国共产党的热爱,某学校举办了一场党史竞赛活动,共有名学生参加了此次竞赛活动.为了解本次竞赛活动的成绩,从中抽取了名学生的得分(得分均为整数,满分为分)进行统计,所有学生的得分都不低于分,将这名学生的得分进行分组,第一组,第二组,第三组,第四组(单位:分),得到如下的频率分布直方图(1)求图中的值,估计此次竞赛活动学生得分的中位数;(2)根据频率分布直方图,估计此次竞赛活动得分的平均值.若对得分不低于平均值的同学进行奖励,请估计在参赛的名学生中有多少名学生获奖21.(12分)已知椭圆的离心率,左、右焦点分别为、,点在椭圆上,过的直线交椭圆于、两点.(1)求椭圆的标准方程;(2)求的面积的最大值.22.(10分)如图,在直棱柱中,已知,点分别的中点.(1)求异面直线与所成的角的大小;(2)求点到平面的距离;(3)在棱上是否存在一点,使得直线与平面所成的角的大小是?若存在,请指出点的位置,若不存在,请说明理由.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】根据双曲线渐近线方程设出方程,再由其过的点即可求解.【题目详解】渐近线方程是,设双曲线方程为,又因为双曲线经过点,所以有,所以双曲线方程为,化为标准方程为.故选:A2、C【解题分析】求出斜率,根据斜率与倾斜角的关系,即可求解.【题目详解】解:,即,直线的斜率为,即直线的倾斜角为120°.故选:C.3、D【解题分析】A.将直线方程的一般式化为斜截式可得;B.令y=0可得;C.求出直线m斜率即可判断;D.设要求直线的方程为,将代入即可.【题目详解】根据题意,依次分析选项:对于A,直线l:,即,其斜率,则倾斜角是,A错误;对于B,直线l:,令y=0,可得,l在x轴上的截距为,B错误;对于C,直线m:,其斜率,,故直线m与直线l不垂直,C错误;对于D,设要求直线的方程为,将代入,可得t=0,即要求直线为,D正确;故选:D4、C【解题分析】设两条直线方程,与抛物线联立,求出弦长的表达式,根据基本不等式求出最小值【题目详解】抛物线的焦点坐标为,设直线:,直线:,联立得:,所以,所以焦点弦,同理得:,所以,因为,所以,故选:C5、C【解题分析】先求出,的坐标,再求中点坐标,利用点满足,可得,从而求双曲线的离心率.【题目详解】解:由双曲线方程可知,渐近线为,分别于联立,解得:,,所以中点坐标为,因为点满足,所以,所以,即,所以.故选:C.【题目点拨】本题考查双曲线的离心率,考查直线与双曲线的位置关系,考查学生的计算能力,属于中档题.6、C【解题分析】直接利用向量的坐标运算法则求解即可【题目详解】因为,,所以,故选:C7、A【解题分析】求得圆心坐标和半径,结合点到直线的距离公式和圆的弦长公式,即可求解.【题目详解】由圆的方程可知圆心为,半径为,圆心到直线的距离,所以弦长为.故选:A.8、D【解题分析】把直线方程化为斜截式即得【题目详解】直线方程的斜截式为,斜率为故选:D9、D【解题分析】设,先求出点,得,化简即得解【题目详解】由题意可知椭圆的焦点在轴上,如图所示,设,则,∵为等腰三角形,且,∴.过作垂直轴于点,则,∴,,即点.∵点在过点且斜率为的直线上,∴,解得,∴.故选:D【题目点拨】方法点睛:求椭圆的离心率常用的方法有:(1)公式法(求出椭圆的代入离心率的公式即得解);(2)方程法(通过已知找到关于离心率的方程解方程即得解).10、B【解题分析】根据椭圆的标准方程,确定,计算离心率即可.【题目详解】由知,,,,即,故选:B11、A【解题分析】根据给定条件构造函数,再探讨其单调性并借助单调性判断作答.【题目详解】令函数,求导得,当时,,于是得在上单调递减,而,则,即,所以,故选:A12、B【解题分析】循环体第一次运行后;第二次运行后;第三次运行后,第四次运行后;循环结束,输出值为4,答案选B考点:程序框图的功能二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】根据渐近线方程、焦距可得,,再根据双曲线参数关系、焦点的位置写出双曲线标准方程.详解】由题设,可知:,,∴由,可得,,又焦点在轴上,∴双曲线的标准方程为.故答案为:.14、##0.4【解题分析】应用等比中项的性质及等差数列通项公式求公差d,进而写出等差数列的通项公式、前n项和公式,再求目标式的最小值.【题目详解】由题设,,则,整理得,又,解得,故,,所以,故当时目标式有最小值为.故答案为:15、2【解题分析】求出圆锥轴截面顶角大小,判断并求出所求面积最大值【题目详解】如图,是圆锥轴截面,是一条母线,设轴截面顶角为,因为圆锥的高为1,底面半径为,所以,,所以,,设圆锥母线长为,则,截面的面积为,因为,所以时,故答案为:216、【解题分析】由空间向量的模的计算求得向量的模,再由单位向量的定义求得答案.【题目详解】解:因为,所以,所以与向量同方向的单位向量的坐标为,故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),600(2)【解题分析】用平均数及方差公式计算即可.用平均值得、之间的关系,再由,解不等式可得解.【小问1详解】甲类品牌汽车的排放量的平均值,甲类品牌汽车的排放量的方差.【小问2详解】由题意知乙类品牌汽车的排放量的平均值=120(g/km),得x+y=220,故y=220-x,所以乙类品牌汽车的排放量的方差,因为乙类品牌汽车比甲类品牌汽车的排放量稳定性好,所以,解得.18、(1)在R上单调递增,无单调递减区间;(2)证明见解析.【解题分析】(1)对求导,令并应用导数求最值,确定的符号,即可知的单调性.(2)利用作差法转化证明的结论,令结合导数研究其单调性,最后讨论的大小关系判断的符号即可证结论.【小问1详解】由题设,.令,则.当时,单调递减;当时,单调递增故,即,则在R上单调递增,无单调递减区间.【小问2详解】.令,则.令,则,显然在R上单调递增,且,∴当时,单调递减;当时,单调递增.故,即,在R上单调递增,又,∴当时,,;当时,,;当时,.综上,,即.【题目点拨】关键点点睛:第二问,应用作差法有,构造中间函数并应用导数研究单调性,最后讨论的大小证结论.19、(1);(2).【解题分析】(1)求出直线的方程,然后联立直线、的方程,即可求得点的坐标;(2)设,可求得线段的中点的坐标,将点的坐标代入直线的方程,可求得的值,可得出点的坐标,进而利用直线的斜率和点斜式可得出直线的方程.【小问1详解】解:,所以,而,则,所以直线的方程为,由,解得,所以顶点的坐标为.【小问2详解】解:因为在直线,所以可设,由为线段的中点,所以,将的坐标代入直线的方程,所以,解得,所以.故,故直线的方程为,即.20、(1),中位数为;(2)得分的平均值为,估计有260名学生获奖.【解题分析】(1)根据给定的频率分布直方图,利用各小矩形面积和为1计算得值;再由在中位数两侧所对小矩形面积相等即可计算得解.(2)由频率分布直方图求平均数的方法求出得分平均值即可估计;再求出不低于平均分的频率即可估计获奖人数.【小问1详解】由频率分布直方图知:,解得,设此次竞赛活动学生得分的中位数为,因数据落在内的频率为0.4,落在内的频率为0.8,从而可得,由得:,所以,估计此次竞赛活动学生得分的中位数为.【小问2详解】由频率分布直方图及(1)知:数据落在,,,的频率分别为,,此次竞赛活动学生得分不低于82的频率为,则,所以估计此次竞赛活动得分的平均值为,在参赛的名学生中估计有260名学生获奖.21、(1)(2)【解题分析】(1)利用椭圆的离心率、点在椭圆上以及得到的方程组,进而得到椭圆的标准方程;(2)设出直线方程,联立直线和椭圆方程,得到关于的一元二次方程,利用根与系数的关系和三角形的面积公式得到三角形的面积,再利用基本不等式求其最值.【小问1详解】解:由题可得,且,将点代入椭圆方程,得,解得,,即椭圆方程为;【小问2详解】解:由(1)可得,,设:,联立,消去,得,设,,则,则所以,当且仅当,即时取等号,故的面积的最大值为.22、(1)(2)(3)不存在,理由见解析【解题分析】(1)由题意,以点A为原点,方向分别为x轴、y轴与z轴的正方向,建立空间直角坐标系.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度采购合同范本
- 2024年度家居门窗定制及安装合同
- 2024年房屋买卖:个人合同范本
- 2024年建筑行业混凝土分包合同
- 2024年定制:个体电商账户买卖合同
- 2024医疗机构信息化管理系统开发合同
- 2024年新式办公空间租赁协议
- 2024年新一轮合作:钢材制造与安装协议
- 2024年云计算数据中心施工合同
- DB4101T 87.1-2023 公共服务领域标识英文译写规范 第1部分:通则
- 辽宁省葫芦岛市各县区乡镇行政村村庄村名居民村民委员会明细
- 植物种子的传播方式课件
- 电缆敷设施工方案及安全措施
- 百合干(食品安全企业标准)
- 肺血栓栓塞症临床路径(县级医院版)
- 国开成本会计第10章综合练习试题及答案
- 《西游记》-三打白骨精(剧本台词)精选
- T∕CSCS 012-2021 多高层建筑全螺栓连接装配式钢结构技术标准-(高清版)
- 充电站项目合作方案-高新
- 急诊科临床诊疗指南-技术操作规范更新版
- 精通版六年级上册小学英语 Unit 3 单元知识点小结
评论
0/150
提交评论