湖北省宜昌二中2024年高二数学第一学期期末联考模拟试题含解析_第1页
湖北省宜昌二中2024年高二数学第一学期期末联考模拟试题含解析_第2页
湖北省宜昌二中2024年高二数学第一学期期末联考模拟试题含解析_第3页
湖北省宜昌二中2024年高二数学第一学期期末联考模拟试题含解析_第4页
湖北省宜昌二中2024年高二数学第一学期期末联考模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省宜昌二中2024年高二数学第一学期期末联考模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知梯形ABCD中,,,且对角线交于点E,过点E作与AB所在直线的平行线l.若AB和CD所在直线的方程分别是与,则直线l与CD所在直线的距离为()A.1 B.2C.3 D.42.已知数列的前n项和为,则“数列是等比数列”为“存在,使得”的()A.既不充分也不必要条件 B.必要不充分条件C.充要条件 D.充分不必要条件3.若在1和16中间插入3个数,使这5个数成等比数列,则公比为()A. B.2C. D.44.已知抛物线的焦点为F,过点F作倾斜角为的直线l与抛物线交于两点,则POQ(O为坐标原点)的面积S等于()A. B.C. D.5.在中,若,,,则此三角形解的情况为()A.无解 B.两解C.一解 D.解的个数不能确定6.已知等比数列的首项为1,公比为2,则=()A. B.C. D.7.函数,则曲线在点处的切线方程为()A. B.C. D.8.已知函数,那么“”是“在上为增函数”的A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件9.已知等比数列的公比q为整数,且,,则()A.2 B.3C.-2 D.-310.若直线先向右平移一个单位,再向下平移一个单位,然后与圆相切,则c的值为()A.8或-2 B.6或-4C.4或-6 D.2或-811.已知命题:;:若,则,则下列判断正确的是()A.为真,为真,为假 B.为真,为假,为真C.为假,为假,为假 D.为真,为假,为假12.已知双曲线的焦点在y轴上,且实半轴长为4,虚半轴长为5,则双曲线的标准方程为()A.=1 B.=1C.=1 D.=1二、填空题:本题共4小题,每小题5分,共20分。13.设函数,则___________.14.已知正四面体ABCD中,E,F分别是线段BC,AD的中点,点G是线段CD上靠近D的四等分点,则直线EF与AG所成角的余弦值为______15.已知抛物线:,过焦点作倾斜角为的直线与交于,两点,,在的准线上的投影分别为,两点,则__________.16.曲线在点处的切线与坐标轴围成的三角形面积为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线:的焦点为,点在上,点在的内侧,且的最小值为.(1)求的方程;(2)为坐标原点,点A在y轴正半轴上,点B,C为E上两个不同的点,其中B点在第四象限,且AB,互相垂直平分,求四边形AOBC的面积.18.(12分)已知椭圆的左、右顶点坐标分别是,,短轴长等于焦距.(1)求椭圆的方程;(2)若直线与椭圆相交于两点,线段的中点为,求.19.(12分)一位父亲在孩子出生后,每月给小孩测量一次身高,得到前7个月的数据如下表所示.月龄1234567身高(单位:厘米)52566063656870(1)求小孩前7个月的平均身高;(2)求出身高y关于月龄x的回归直线方程(计算结果精确到整数部分);(3)利用(2)的结论预测一下8个月的时候小孩的身高参考公式:20.(12分)已知函数(1)当时,求的单调性;(2)若存在两个极值点,试证明:21.(12分)已知函数,且)的图象经过点和

.(1)求实数,的值;(2)若,求数列前项和

.22.(10分)如图,已知三棱柱的侧棱与底面垂直,,,和分别是和的中点,点在直线上,且.(1)证明:无论取何值,总有;(2)是否存在点,使得平面与平面所成角为?若存在,试确定点的位置;若不存在,请说明理由.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】先求得直线AB和CD之间的距离,再求直线l与CD所在直线的距离即可解决.【题目详解】梯形ABCD中,,,且对角线交于点E,则有△与△相似,相似比为,则,点E到CD所在直线的距离为AB和CD所在直线距离的又AB和CD所在直线的距离为,则直线l与CD所在直线的距离为2故选:B2、D【解题分析】由充分必要条件的定义,结合等比数列的通项公式和求和公式,以及利用特殊数列的分法,即可求解.【题目详解】由题意,数列是等比数列,设等比数列的公比为,则,所以存在,使得,即充分性成立;若存在,使得,可取,即,可得,当,可得,此时数列不是等比数列,即必要性不成立,所以数列是等比数列为存在,使得的充分不必要条件.故选:D.3、A【解题分析】根据等比数列的通项得:,从而可求出.【题目详解】解:成等比数列,∴根据等比数列的通项得:,,故选:A.4、A【解题分析】由抛物线的方程可得焦点的坐标,由题意设直线的方程,与抛物线的方程,联立求出两根之和及两根之积,进而求出,的纵坐标之差的绝对值,代入三角形的面积公式求出面积【题目详解】抛物线的焦点为,,由题意可得直线的方程为,设,,,,联立,整理可得:,则,,所以,所以,故选:A5、C【解题分析】求出的值,结合大边对大角定理可得出结论.【题目详解】由正弦定理可得可得,因为,则,故为锐角,故满足条件的只有一个.故选:C.6、D【解题分析】数列是首项为1,公比为4的等比数列,然后可算出答案.【题目详解】因为等比数列的首项为1,公比为2,所以数列是首项为1,公比为4的等比数列所以故选:D7、D【解题分析】对函数求导,利用导数的几何意义求出切线斜率即可计算作答.【题目详解】依题意,,即有,而,则过点,斜率为1的直线方程为:,所以曲线在点处切线方程为.故选:D8、A【解题分析】对函数进行求导得,进而得时,,在上为增函数,然后判断充分性和必要性即可.【题目详解】解:因为的定义域是,所以,当时,,在上为增函数.所以在上为增函数,是充分条件;反之,在上为增函数或,不是必要条件.故选:A.【题目点拨】本题主要考查充分条件和必要条件的判断,属于中档题.9、A【解题分析】由等比数列的性质有,结合已知求出基本量,再由即可得答案.【题目详解】因为,,且q为整数,所以,,即q=2.所以.故选:A10、A【解题分析】求出平移后的直线方程,再利用直线与圆相切并借助点到直线距离公式列式计算作答.【题目详解】将直线先向右平移一个单位,再向下平移一个单位所得直线方程为,因直线与圆相切,从而得,即,解得或,所以c的值为8或-2.故选:A11、D【解题分析】先判断出命题,的真假,即可判断.【题目详解】因为成立,所以命题为真,由可得或,所以命题为假命题,所以为真,为假,为假.故选:D.12、D【解题分析】根据双曲线的性质求解即可.【题目详解】双曲线的焦点在y轴上,且实半轴长为4,虚半轴长为5,可得a=4,b=5,所以双曲线方程为:=1.故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】由的导数为,将代入,即可求出结果.【题目详解】因为,所以,所以.故答案为:.14、【解题分析】建立空间直角坐标系,令正四面体的棱长为,即可求出点的坐标,从而求出异面直线所成角的余弦值;【题目详解】解:如图建立空间直角坐标系,令正四面体的棱长为,则,所以,所以,所以,,,,,设,因为,所以,所以,所以,,设直线与所成角为,则故答案为:15、【解题分析】设,则,将直线方程与抛物线方程联立,结合韦达定理即得.【题目详解】由抛物线:可知则焦点坐标为,∴过焦点且斜率为的直线方程为,化简可得,设,则,由可得,所以则故答案为:16、【解题分析】运用导数的几何意义进行求解即可.【题目详解】由,所以,而,所以切线方程为:,令,得,令,得,所以三角形的面积为:,故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】(1)根据题意,结合抛物线定义,可求得,即得抛物线方程;(2)由题意推出四边形AOBC是菱形.,设,根据抛物线的对称性,可表示出B,C的坐标,从而利用向量的坐标运算,求得所设参数值,进而求得答案.【小问1详解】的准线为:,作于R,根据抛物线的定义有,所以,因为在的内侧,所以当P,Q,R三点共线时,取得最小值,此时,解得,所以的方程为.小问2详解】因为AB,OC互相垂直平分,所以四边形AOBC是菱形.由,得轴,设点,则,由抛物线的对称性知,,,.由,得,解得,所以在菱形中,,边上的高,所以菱形的面积.18、(1);(2).【解题分析】(1)由椭圆顶点可知,又短轴长等于焦距可知,求出,即可写出椭圆方程(2)根据“点差法”可求直线的斜率,写出直线方程,联立椭圆方程可得,,代入弦长公式即可求解.【题目详解】(1)依题意,解得.故椭圆方程为.(2)设的坐标分别为,,直线的斜率显然存在,设斜率为,则,两式相减得,整理得.因为线段的中点为,所以,所以直线的方程为,联立,得,则,,故.【题目点拨】本题主要考查了椭圆的标准方程及简单几何性质,“点差法”,弦长公式,属于中档题.19、(1)62;(2);(3)74.【解题分析】(1)直接利用平均数的计算公式即可求解;(2)套公式求出b、a,求出回归方程;(3)把x=8代入回归方程即可求出.【小问1详解】小孩前7个月的平均身高为.【小问2详解】(2)设回归直线方程是.由题中的数据可知.,..计算结果精确到整数部分,所以,于是,所以身高y关于月龄x的回归直线方程为.【小问3详解】由(2)知,.当x=8时,y=3×8+50=74,所以预测8个月的时候小孩的身高为74厘米.20、(1)答案见解析(2)证明见解析【解题分析】(1)依据导函数判定函数的单调性即可;(2)等价转化和构造新函数在不等式证明中可以起到关键性作用.【小问1详解】的定义域为,当时,令得,当时,;当时,所以在和上单调递减,在上单调递增.【小问2详解】,存在两个极值点,则有二正根,由,得由于的两个极值点满足,所以,不妨设,则由于,所以等价于设函数,在单调递减,又,从而所以,故.【题目点拨】导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理21、(1),(2)【解题分析】(1)将A、B点坐标代入,计算求解,即可得答案.(2)由(1)可得解析式,即可得,利用分组求和法,结合等比数列的求和公式,即可得答案.【小问1详解】由已知,可得,所以,解得,

.【小问2详解】由(1)得,又,所以,故

.22、(1)证明见解析;(2)不存在,理由见解析.【解题分析】(1)以点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论